GENERALIZED LAGUERRE POLYNOMIAL BOUNDS FOR SUBCLASS OF BI-UNIVALENT FUNCTIONS

被引:0
|
作者
Panigrahi, Trailokya [1 ]
Sokol, Janusz [2 ]
机构
[1] KIIT Deemed Univ, Dept Math, Sch Appl Sci, Bhubaneswar 751024, Odisha, India
[2] Univ Rzeszow, Fac Math & Nat Sci, Rzeszow, Poland
来源
关键词
Analytic functions; Bi-univalent functions; Generalized Laguerre polynomial; Generating function; Fekete-Szego inequality; Principle of subordination;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we propose to introduce a new subclass of biunivalent analytic functions T-Sigma(lambda, gamma) (0 < lambda <= 1, gamma >= 0) which is defined by making use of the generalized Laguerre polynomials in the open unit disk del. We derive upper bounds for the coefficients vertical bar a(2)vertical bar, vertical bar a(3)vertical bar and discuss Fekete-Szego problem for the functions belonging to the new introduced class T-Sigma(lambda, gamma).
引用
收藏
页码:127 / 140
页数:14
相关论文
共 50 条
  • [31] On a subclass of bi-univalent functions defined by convex combination of order α with the Faber polynomial expansion
    Wurenqiqige
    Li Shu-hai
    Dashdondog, Tsedenbayar
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2021, 36 (02) : 278 - 286
  • [32] On a subclass of bi-univalent functions defined by convex combination of order α with the Faber polynomial expansion
    Wurenqiqige
    LI Shu-hai
    Tsedenbayar Dashdondog
    Applied Mathematics:A Journal of Chinese Universities, 2021, 36 (02) : 278 - 286
  • [33] Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion
    Srivastava, Hari Mohan
    Motamednezhad, Ahmad
    Salehian, Safa
    AXIOMS, 2021, 10 (01) : 1 - 13
  • [34] Coefficient Bounds for Certain Subclass of Meromorphic Bi-Univalent Functions Defined by Hadamard Product
    Zireh, A.
    Hajiparvaneh, S.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2019, 43 (06) : 909 - 920
  • [35] Initial coefficient bounds for a subclass of m-old symmetric bi-univalent functions
    Srivastava, H. M.
    Sivasubramanianz, S.
    Sivakurnar, R.
    TBILISI MATHEMATICAL JOURNAL, 2014, 7 (02): : 1 - 10
  • [36] A new general subclass of analytic bi-univalent functions
    Bulut, Serap
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (03) : 1330 - 1338
  • [37] COEFFICIENT BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH DZIOK-SRIVASTAVA OPERATOR
    Shabani, Mohammad Mehdi
    Sababe, Saeed Hashemi
    KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (01): : 73 - 80
  • [38] On a subclass of bi-univalent functions defined by convex combination of order α with the Faber polynomial expansion
    Shu-hai Wurenqiqige
    Tsedenbayar Li
    Applied Mathematics-A Journal of Chinese Universities, 2021, 36 : 278 - 286
  • [39] Gegenbauer Polynomials For a New Subclass of Bi-univalent Functions
    Saravanan, Gunasekar
    Baskaran, Sudharsanan
    Vanithakumari, Balasubramaniam
    Wanas, Abbas Kareem
    KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (03): : 487 - 497
  • [40] COEFFICIENT ESTIMATES FOR A SUBCLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS
    Adegani, Ebrahim Analouei
    Bulut, Serap
    Zireh, Ahmad
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (02) : 405 - 413