GEOMETRIC POLYNOMIALS AND INTEGER PARTITIONS

被引:0
|
作者
Merca, Mircea [1 ,2 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] Acad Romanian Scientists, Ilfov 3,Sect 5, Bucharest, Romania
关键词
geometric polynomials; geometric numbers; Bernoulli numbers; Genocchi numbers; partitions; NUMBERS; SERIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that the geometric polynomials can be expressed as sums over integer partitions in two different ways. New formulas involving geometric numbers, Bernoulli numbers, and Genocchi numbers are derived in this context.
引用
收藏
页码:117 / 127
页数:11
相关论文
共 50 条
  • [1] Derivatives and Integrals of Polynomials Associated with Integer Partitions
    Dawsey, Madeline Locus
    Russell, Tyler
    Urban, Dannie
    JOURNAL OF INTEGER SEQUENCES, 2022, 25 (05)
  • [2] GEOMETRIC PROPERTIES OF THE LATTICE OF POLYNOMIALS WITH INTEGER COEFFICIENTS
    Lipnicki, Artur
    Smietanski, Marek J.
    OPUSCULA MATHEMATICA, 2024, 44 (04) : 565 - 585
  • [3] Integer partitions
    Baylis, John
    MATHEMATICAL GAZETTE, 2005, 89 (516): : 564 - 565
  • [4] Optimal integer partitions
    Engel, Konrad
    Radzik, Tadeusz
    Schlage-Puchta, Jan-Christoph
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 425 - 436
  • [5] Notes on integer partitions
    Ganter, Bernhard
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 142 : 31 - 40
  • [6] ON THE POSET OF PARTITIONS OF AN INTEGER
    ZIEGLER, GM
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 42 (02) : 215 - 222
  • [7] Integer Partitions and Convexity
    Bouroubi, Sadek
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (06)
  • [8] Constrained integer partitions
    Borgs, C
    Chayes, JT
    Mertens, S
    Pittel, B
    LATIN 2004: THEORETICAL INFORMATICS, 2004, 2976 : 59 - 68
  • [9] BIASES IN INTEGER PARTITIONS
    Kim, Byungchan
    Kim, Eunmi
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 104 (02) : 177 - 186
  • [10] Intersecting integer partitions
    Borg, Peter
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 66 : 265 - 275