BREGMAN DISTANCES AND KLEE SETS IN BANACH SPACES

被引:1
|
作者
Fang, Donghui [1 ,2 ]
Song, Wen [3 ]
Li, Chong
机构
[1] Jishou Univ, Sch Math & Comp Sci, Jishou 416000, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[3] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2009年 / 13卷 / 6A期
关键词
Bregman farthest-point map; Klee set; D-maximally approximate compactness; Totally convex function; MONOTONE-OPERATORS; CONVEX-FUNCTIONS; FARTHEST POINTS; CHEBYSHEV SETS; OPTIMIZATION; PROJECTIONS; ALGORITHMS;
D O I
10.11650/twjm/1500405617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first present some sufficient conditions for the upper semicontinuity and/or the continuity of the Bregman farthest-point map Q(C)(g) and the relative farthest-point map S-C(g) for a nonempty D-maximally approximately compact subset C of a Banach space X. We next present certain sufficient conditions as well as equivalent conditions for a Klee set to be singleton in a Banach space X. Our results extend and/or improve the corresponding ones of [Bauschke, et al., J. Approx. Theory, 158 (2009), pp. 170-183] to infinite dimensional spaces.
引用
收藏
页码:1847 / 1865
页数:19
相关论文
共 50 条
  • [1] Bregman distances and Klee sets
    Bauschke, Heinz H.
    Wang, Xianfu
    Ye, Jane
    Yuan, Xiaoming
    JOURNAL OF APPROXIMATION THEORY, 2009, 158 (02) : 170 - 183
  • [2] Bregman distances without coercive condition: suns, Chebyshev sets and Klee sets
    Luo, Xian-Fa
    Meng, Li
    Wen, Ching-Feng
    Yao, Jen-Chih
    OPTIMIZATION, 2019, 68 (08) : 1599 - 1624
  • [3] Chebyshev Sets, Klee Sets, and Chebyshev Centers with Respect to Bregman Distances: Recent Results and Open Problems
    Bauschke, Heinz H.
    Macklem, Mason S.
    Wang, Xianfu
    FIXED-POINT ALGORITHMS FOR INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 49 : 1 - 21
  • [4] ON THE EXISTENCE OF SOLUTIONS OF VARIATIONAL INEQUALITIES USING BREGMAN DISTANCES IN BANACH SPACES
    Jahromi, Maryam Tamadoni
    Naraghirad, Eskandar
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (04) : 699 - 712
  • [5] Bregman distances and Chebyshev sets
    Bauschke, Heinz H.
    Wang, Xianfu
    Ye, Jane
    Yuan, Xiaoming
    JOURNAL OF APPROXIMATION THEORY, 2009, 159 (01) : 3 - 25
  • [6] The Bregman distance, approximate compactness and convexity of Chebyshev sets in Banach spaces
    Li, Chong
    Song, Wen
    Yao, Jen-Chih
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (06) : 1128 - 1149
  • [7] Klee sets and Chebyshev centers for the right Bregman distance
    Bauschke, Heinz H.
    Macklem, Mason S.
    Sewell, Jason B.
    Wang, Xianfu
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (06) : 1225 - 1244
  • [8] Banach-Like Distances and Metric Spaces of Compact Sets
    Mennucci, A. C. G.
    Duci, A.
    SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (01): : 19 - 66
  • [9] WEAK CONVERGENCE THEOREMS FOR FIRMLY GENERALIZED NONEXPANSIVE MAPPINGS WITH BREGMAN DISTANCES IN BANACH SPACES
    Ibaraki, Takanori
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (11) : 2207 - 2219
  • [10] Bregman distances, totally convex functions, and a method for solving operator equations in banach spaces
    Butnariu, Dan
    Resmerita, Elena
    ABSTRACT AND APPLIED ANALYSIS, 2006,