A nonlinear viscoplasticity theory for transversely isotropic materials

被引:0
|
作者
Spencer, AJM [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate constitutive equations for a transversely isotropic viscoplastic material that is the analogue of a Bingham fluid for an isotropic material. The material is assumed to be incompressible and inextensible in the direction of the axis of transverse isotropy. A general yield criterion for transversely isotropic material is formulated. The rate-of-deformation is assumed to depend on the excess stress over the yield stress. Linear and nonlinear constitutive equations for the excess stress are established. The case in which the excess stress depends on higher order deformation rates is also considered.
引用
收藏
页码:149 / 154
页数:6
相关论文
共 50 条
  • [31] A FINITE DEFORMATION POSSIBLE IN TRANSVERSELY ISOTROPIC MATERIALS
    HUILGOL, RR
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1966, 17 (06): : 787 - &
  • [33] Elastic Microplane Formulation for Transversely Isotropic Materials
    Jin, Congrui
    Salviato, Marco
    Li, Weixin
    Cusatis, Gianluca
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2017, 84 (01):
  • [34] Strength characteristics of transversely isotropic rock materials
    Yang, Xue-Qiang
    Zhang, Li-Juan
    Ji, Xiao-Ming
    GEOMECHANICS AND ENGINEERING, 2013, 5 (01) : 71 - 86
  • [35] A constitutive model for transversely isotropic dispersive materials
    Amendola, A.
    Motta, J. de Castro
    Saccomandi, G.
    Vergori, L.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 480 (2281):
  • [36] A paraboloid failure surface for transversely isotropic materials
    Cazacu, O
    Critescu, ND
    MECHANICS OF MATERIALS, 1999, 31 (06) : 381 - 393
  • [37] Fundamental solution for transversely isotropic thermoelastic materials
    Hou, Peng-Fei
    Leung, Andrew Y. T.
    Chen, Chen-Ping
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (02) : 392 - 408
  • [38] On Eshelby’s tensor in transversely isotropic materials
    Chun-Ron Chiang
    Acta Mechanica, 2017, 228 : 1819 - 1833
  • [39] Deformational theory of plasticity of transversely isotropic media
    Lebedev, A. A.
    Koval'chuk, B. I.
    Voronina, O. V.
    Kosarchuk, V. V.
    STRENGTH OF MATERIALS, 1998, 30 (01) : 1 - 8
  • [40] Deformational theory of plasticity of transversely isotropic media
    A. A. Lebedev
    B. I. Koval’chuk
    O. V. Voronina
    V. V. Kosarchuk
    Strength of Materials, 1998, 30 : 1 - 8