Complexity of controlling quantum many-body dynamics

被引:28
|
作者
Caneva, T. [1 ,2 ]
Silva, A. [3 ,4 ]
Fazio, R. [5 ,6 ]
Lloyd, S. [7 ]
Calarco, T. [1 ]
Montangero, S. [1 ]
机构
[1] Univ Ulm, Inst Quanteninformationsverarbeitung, D-89069 Ulm, Germany
[2] ICFO, Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[3] SISSA, Int Sch Adv Studies, I-34136 Trieste, Italy
[4] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[5] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[6] CNR, Ist Nanosci, I-56126 Pisa, Italy
[7] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 04期
基金
美国国家科学基金会;
关键词
PHYSICS;
D O I
10.1103/PhysRevA.89.042322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate that arbitrary time evolutions of many-body quantum systems can be reversed even in cases when only part of the Hamiltonian can be controlled. The reversed dynamics obtained via optimal controlcontrary to standard time-reversal procedures-is extremely robust to external sources of noise. We provide a lower bound on the control complexity of a many-body quantum dynamics in terms of the dimension of the manifold supporting it, elucidating the role played by integrability in this context.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Adiabatic tracking of quantum many-body dynamics
    Saberi, Hamed
    Opatrny, Tomas
    Molmer, Klaus
    del Campo, Adolfo
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [22] Characterizing complexity of many-body quantum dynamics by higher-order eigenstate thermalization
    Kaneko, Kazuya
    Iyoda, Eiki
    Sagawa, Takahiro
    PHYSICAL REVIEW A, 2020, 101 (04)
  • [23] Quantum information processing with quantum zeno many-body dynamics
    Monras, Alex
    Romero-Isart, Oriol
    Quantum Information and Computation, 2010, 10 (3-4): : 0201 - 0222
  • [24] QUANTUM INFORMATION PROCESSING WITH QUANTUM ZENO MANY-BODY DYNAMICS
    Monras, Alex
    Romero-Isart, Oriol
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (3-4) : 201 - 222
  • [25] Controlling nonergodicity in quantum many-body systems by reinforcement learning
    Ye, Li-Li
    Lai, Ying-Cheng
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [26] Probing and controlling quantum many-body systems in optical lattices
    Bloch, I.
    QUANTUM MATTER AT ULTRALOW TEMPERATURES, 2016, 191 : 299 - 323
  • [27] A Central Limit Theorem in Many-Body Quantum Dynamics
    Gérard Ben Arous
    Kay Kirkpatrick
    Benjamin Schlein
    Communications in Mathematical Physics, 2013, 321 : 371 - 417
  • [28] Localization and Glassy Dynamics Of Many-Body Quantum Systems
    Carleo, Giuseppe
    Becca, Federico
    Schiro, Marco
    Fabrizio, Michele
    SCIENTIFIC REPORTS, 2012, 2
  • [29] Symmetric dynamics in dissipative quantum many-body models
    Zheng, Yi
    Yang, Shuo
    PHYSICAL REVIEW A, 2021, 104 (02)
  • [30] Probing quantum many-body dynamics in nuclear systems
    Simenel, C.
    Dasgupta, M.
    Hinde, D. J.
    Kheifets, A.
    Wakhle, A.
    HEAVY ION ACCELERATOR SYMPOSIUM 2013, 2013, 63