Structure and Deuterium Desorption from Ca3Mg2Ni13 Deuteride: A Neutron Diffraction Study

被引:16
|
作者
Zhang, Qingan [1 ]
Sun, Dalin [2 ]
Zhang, Junxian [3 ]
Latroche, Michel [3 ]
Ouyang, Liuzhang [4 ]
Zhu, Min [4 ]
机构
[1] Anhui Univ Technol, Sch Mat Sci & Engn, Maanshan 243002, Peoples R China
[2] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[3] CNRS UPEC, UMR 7182, CMTR, Inst Chim & Mat Paris Est, F-94320 Thiais, France
[4] S China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2014年 / 118卷 / 09期
基金
中国国家自然科学基金;
关键词
HYDROGEN STORAGE PROPERTIES; CRYSTAL-STRUCTURE; THERMAL-DECOMPOSITION; X-RAY; PHASE; MG; HYDRIDE; TRANSITION; ALLOYS; LA;
D O I
10.1021/jp412378r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Ca3Mg2Ni13 unit cell can be viewed as the stacking of three blocks along the c axis. Each block is composed of two sub-blocks; one sub-block contains one layer of a [CaMgNi4] unit, and the other sub-block consists of one layer of a [CaMgNi4] unit and one layer of a [CaNi5] unit. To understand the deuterium release from the Ca3Mg2Ni13 deuteride, crystal structures of Ca3Mg2Ni13D15.6, Ca3Mg2Ni13D5.9, and Ca3Mg2Ni13D0.3 corresponding to before, during, and after deuterium desorption were determined by neutron diffraction. In Ca3Mg2Ni13D15.6, D atoms occupy interstitial sites within [CaNi5] and [CaMgNi4] units as well as sites at two unit borders. Upon deuterium desorption, the D atoms located at unit borders are released first. Then D atoms located within [CaNi5] and [CaMgNi4] units are simultaneously released which leads to the coexistence of Ca3Mg2Ni13D5.9 and a deuterium-poor solid solution phase. With further desorption, Ca3Mg2Ni13D5.9 transforms into Ca3Mg2Ni13D0.3 where D atoms reside in [CaNi5] units only.
引用
收藏
页码:4626 / 4633
页数:8
相关论文
共 50 条
  • [41] LOW ALBITE, NAALSI3O8 - NEUTRON-DIFFRACTION STUDY OF CRYSTAL-STRUCTURE AT 13 K
    SMITH, JV
    ARTIOLI, G
    KVICK, A
    AMERICAN MINERALOGIST, 1986, 71 (5-6) : 727 - 733
  • [42] Noncollinear spin structure in Fe3+xCo3-xTi2 (x=0, 2, 3) from neutron diffraction
    Wang, Haohan
    Balasubramanian, Balamurugan
    Pahar, Rabindra
    Skomski, Ralph
    Liu, Yaohua
    Huq, Ashfia
    Sellmyer, D. J.
    Xu, Xiaoshan
    PHYSICAL REVIEW MATERIALS, 2019, 3 (06):
  • [43] Neutron diffraction study of magnetic structure of the heavy fermion antiferromagnet Ce(Ni1-xRhx)2Ge2
    Kadowaki, H
    Fukuhara, T
    Maezawa, K
    Aso, N
    Yoshizawa, H
    Ooshima, T
    Ishikawa, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (08) : 2069 - 2070
  • [44] NEUTRON POWDER DIFFRACTION STUDY OF THE 12-K SUPERCONDUCTOR LA3NI2B2N3-X
    HUANG, Q
    CHAKOUMAKOS, BC
    SANTORO, A
    CAVA, RJ
    KRAJEWSKI, JJ
    PECK, WF
    PHYSICA C, 1995, 244 (1-2): : 101 - 105
  • [45] A neutron diffraction study of Ca0.4K0.6(NO3)(1.4) from the glass to liquid state
    Tengroth, C
    Swenson, J
    Borjesson, L
    PHYSICA B, 1997, 234 : 414 - 415
  • [46] THE STRUCTURE OF BETA-BI2O3 FROM POWDER NEUTRON-DIFFRACTION DATA
    BLOWER, SK
    GREAVES, C
    ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS, 1988, 44 : 587 - 589
  • [47] Neutron diffraction study of Ca0.4K0.6(NO3)1.4 from the glass to liquid state
    Tengroth, C.
    Swenson, J.
    Borjesson, L.
    Physica B: Condensed Matter, 1997, 234-236 : 414 - 415
  • [48] A neutron diffraction study of Ca doped and oxygen deficient YBa2Cu3O7-delta
    Berastegui, P
    Eriksson, SG
    Johansson, LG
    Kakihana, M
    Osada, M
    Mazaki, H
    Tochihara, S
    JOURNAL OF SOLID STATE CHEMISTRY, 1996, 127 (01) : 56 - 63
  • [49] Structure Determination of Ca3HfSi2O9 and Ca3ZrSi2O9 from Powder Diffraction
    Plaisier, J. R.
    Jansen, J.
    De Graaff, R. A. G.
    Ijdo, D. J. W.
    Journal of Statistical Computation and Simulation, 525 (355):
  • [50] STRUCTURE DETERMINATION OF CA3HFSI2O9 AND CA3ZRSI2O9 FROM POWDER DIFFRACTION
    PLAISIER, JR
    JANSEN, J
    DEGRAAFF, RAG
    IJDO, DJW
    JOURNAL OF SOLID STATE CHEMISTRY, 1995, 115 (02) : 464 - 468