Multi-task learning for stock selection

被引:0
|
作者
Ghosn, J
Bengio, Y
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial Neural Networks can be used to predict future returns of stocks in order to take financial decisions. Should one build a separate network for each stock or share the same network for all the stocks? In this paper we also explore other alternatives, in which some layers are shared and others are not shared. When the prediction of future returns for different stocks are viewed as different tasks, sharing some parameters across stocks is a form of multi-task learning. In a series of experiments with Canadian stocks, we obtain yearly returns that are more than 14% above various benchmarks.
引用
收藏
页码:946 / 952
页数:7
相关论文
共 50 条
  • [31] Survey of Multi-Task Learning
    Zhang Y.
    Liu J.-W.
    Zuo X.
    1600, Science Press (43): : 1340 - 1378
  • [32] A Survey on Multi-Task Learning
    Zhang, Yu
    Yang, Qiang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (12) : 5586 - 5609
  • [33] Joint Client Selection and Task Assignment for Multi-Task Federated Learning in MEC Networks
    Cheng, Zhipeng
    Min, Minghui
    Liwang, Minghui
    Gao, Zhibin
    Huang, Lianfen
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [34] Modular Adaptive Policy Selection for Multi-Task Imitation Learning through Task Division
    Antotsiou, Dafni
    Ciliberto, Carlo
    Kim, Tae-Kyun
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 2459 - 2465
  • [35] Learning Multi-Level Task Groups in Multi-Task Learning
    Han, Lei
    Zhang, Yu
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 2638 - 2644
  • [36] Efficient Online Multi-Task Learning via Adaptive Kernel Selection
    Yang, Peng
    Li, Ping
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 2465 - 2471
  • [37] MULTI-TASK DISTILLATION: TOWARDS MITIGATING THE NEGATIVE TRANSFER IN MULTI-TASK LEARNING
    Meng, Ze
    Yao, Xin
    Sun, Lifeng
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 389 - 393
  • [38] Task Variance Regularized Multi-Task Learning
    Mao, Yuren
    Wang, Zekai
    Liu, Weiwei
    Lin, Xuemin
    Hu, Wenbin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 8615 - 8629
  • [39] Task Switching Network for Multi-task Learning
    Sun, Guolei
    Probst, Thomas
    Paudel, Danda Pani
    Popovic, Nikola
    Kanakis, Menelaos
    Patel, Jagruti
    Dai, Dengxin
    Van Gool, Luc
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8271 - 8280
  • [40] Multi-Task Multi-Sample Learning
    Aytar, Yusuf
    Zisserman, Andrew
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT III, 2015, 8927 : 78 - 91