Fatigue of steam turbine blades with damage on the leading edge

被引:16
|
作者
Shlyannikov, V. N. [1 ]
Yarullin, R. R. [1 ]
Zakharov, A. P. [1 ]
机构
[1] Russian Acad Sci, Res Ctr Power Engn Problems, Lobachevsky St 2-31,Post Box 190, Kazan 420111, Russia
来源
基金
俄罗斯基础研究基金会;
关键词
elastic-plastic stress analysis; low-cycle fatigue test; mechanical properties; fatigue life; turbine blades; single edge notched round specimen; protective coating;
D O I
10.1016/j.mspro.2014.06.289
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study is concerned with the assessment of the fatigue life of cracked steam turbine blades which operate under cyclic loading conditions. The turbine blades fatigue life estimation approach includes numerical stress-strain analysis of real rotor components, experimental study of fatigue and fracture resistance material properties and determination of crack growth rate characteristics on the round bar specimens with the single edge notch. Static and cyclic tests were performed to obtain the main mechanical properties and the fatigue life characteristics of blade's material after loading history. Both specimens with the initial surface state and specimens with high velocity air fuel (HVAF) coating were tested. As a result the fatigue life characteristics of blade's material were determined as a function of operating time. The fatigue crack growth study of surface flow was performed for round bar specimens with different initial single edge notch depth. Experimental constants describing the linear parts of the fatigue fracture diagrams were determined. (C) 2014 Published by Elsevier Ltd. Open access under CC BY license.
引用
收藏
页码:1792 / 1797
页数:6
相关论文
共 50 条
  • [21] Improvement in the corrosive fatigue damage to the low-pressure steam turbine blades due to unbalanced currents
    Tsai, WC
    ELECTRIC POWER SYSTEMS RESEARCH, 2001, 59 (03) : 139 - 148
  • [22] A novel solution for preventing leading edge erosion in wind turbine blades
    Finnegan, William
    Flanagan, Michael
    Coistealbha, Ronan O.
    Keeryadath, Priya Dasan
    Meier, Patrick
    Hung, Le Chi
    Flanagan, Tomas
    Goggins, Jamie
    JOURNAL OF STRUCTURAL INTEGRITY AND MAINTENANCE, 2021, 6 (03) : 136 - 147
  • [23] Mechanisms and computational analysis of leading edge erosion of wind turbine blades
    Mishnaevsky, Leon, Jr.
    Faester, Soren
    Rad, Saeed Doagou
    41ST RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE: MATERIALS AND DESIGN FOR NEXT GENERATION WIND TURBINE BLADES, 2020, 942
  • [24] Aerodynamics of leading-edge protection tapes for wind turbine blades
    Major, Desirae
    Palacios, Jose
    Maughmer, Mark
    Schmitz, Sven
    WIND ENGINEERING, 2021, 45 (05) : 1296 - 1316
  • [25] Leading edge erosion of wind turbine blades: Understanding, prevention and protection
    Mishnaevsky, Leon, Jr.
    Hasager, Charlotte Bay
    Bak, Christian
    Tilg, Anna-Maria
    Bech, Jakob, I
    Rad, Saeed Doagou
    Faester, Soren
    RENEWABLE ENERGY, 2021, 169 (169) : 953 - 969
  • [26] Fatigue failure of low pressure steam turbine blades of a power plant
    Kasiviswanathan, KV
    Muralidharan, NG
    Raghu, N
    Raj, B
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2000, 53 (03): : 445 - 450
  • [27] LEADING EDGE EROSION OF WIND TURBINE BLADES: EFFECTS OF ENVIRONMENTAL PARAMETERS ON IMPACT VELOCITIES AND EROSION DAMAGE RATE
    Verma, Amrit Shankar
    Jiang, Zhiyu
    Ren, Zhengru
    Teuwen, Julie J. E.
    PROCEEDINGS OF THE ASME 39TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2020, VOL 9, 2020,
  • [28] Corrosion fatigue failure of steam turbine moving blades: A case study
    Katinic, Marko
    Kozak, Drazan
    Gelo, Ivan
    Damjanovic, Darko
    ENGINEERING FAILURE ANALYSIS, 2019, 106
  • [29] CORROSION OF STEAM TURBINE BLADES
    HESSAM, K
    CHEMICAL AND PROCESS ENGINEERING, 1971, 52 (08): : 45 - &
  • [30] Research on the aerodynamic performance of the wind turbine blades with leading-edge protuberances
    Zhang, Yinan
    Zhao, Mingzhi
    Zhang, Mingming
    OCEAN ENGINEERING, 2023, 280