Investigation of the electronic structure of the phosphorus-doped Si and SiO2 : Si quantum dots by XPS and HREELS methods

被引:28
|
作者
Kovalev, AI
Wainstein, DL
Tetelbaum, DI
Hornig, W
Kucherehko, YN
机构
[1] CNIICHERMET, Surface Phenomena Res Grp, Moscow 107005, Russia
[2] Tech Phys Res Inst, Nizhnii Novgorod 603950, Russia
[3] BPE Int Dr Hornig GmbH, D-90542 Eckental, Germany
[4] Inst Phys Met, UA-03142 Kiev, Ukraine
关键词
silicon; quantum dots; electronic structure; XPS; HREELS;
D O I
10.1002/sia.1811
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The system of the nanocrystals of Si in the SiO2 matrix (SiO2:Si) attracts a great amount of attention due to its ability for luminescence in the visible and near-IR range of spectrum. The influence of the P ion doping was investigated for the electronic structure of the Si single crystal and the SiO2:Si nanocomposite. The P doping of SiO2 implanted with Si+ and post-annealed at T = 1000degreesC (2 h) results in the enhancement of the PL peak connected with the Si nanocrystals. Owing to the low concentration of Si nanocrystals in the SiO2 matrix, the peculiarities of the P influence on the Si electronic structure were investigated on model samples (Si single crystals with ion doping by P). The determination of the chemical state of the P impurity and the electronic structure of the P-doped Si and (SiO2:Si) quantum dots was carried out using XPS and high-resolution electron energy loss spectroscopy (HREELS). The experimental density of the states (DOS) in the valence band and conduction band of the SiO2:Si composite are in good agreement with the calculation of the local electronic structure around small Si inclusions in the SiO2 matrix by means of the LMTO (linear muffin-tin orbital) method. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:959 / 962
页数:4
相关论文
共 50 条
  • [31] Preferential growth of Si nanocrystals in SiO2/Si/SiO2 sandwich structure
    Du, X. W.
    Li, H.
    Lu, Y. W.
    Sun, J.
    JOURNAL OF CRYSTAL GROWTH, 2007, 305 (01) : 59 - 62
  • [32] Differences of Stark shift behavior in Si/SiO2 quantum wells and quantum dots
    de Sousa, JS
    Freire, JAK
    Freire, VN
    da Silva, EF
    APPLIED SURFACE SCIENCE, 2004, 237 (1-4) : 548 - 552
  • [33] Si emission from the SiO2/Si interface during the growth of SiO2 in the HfO2/SiO2/Si structure
    Ming, Z
    Nakajima, K
    Suzuki, M
    Kimura, K
    Uematsu, M
    Torii, K
    Kamiyama, S
    Nara, Y
    Yamada, K
    APPLIED PHYSICS LETTERS, 2006, 88 (15)
  • [34] Fabrication and carrier transport properties of Si quantum dots/SiO2 multilayer films on Si substrate
    Wang, Xinzhan
    Yu, Wei
    Feng, Huina
    Yu, Xiang
    Wang, Jin
    Teng, Xiaoyun
    Lu, Wanbing
    Fu, Guangsheng
    VACUUM, 2014, 101 : 301 - 305
  • [35] Swift heavy ion stimulated formation of the Si quantum dots in Si/SiO2 multilayer heterostructures
    Kamaev, G. N.
    Cherkova, S. G.
    Gismatulin, A. A.
    Volodin, V. A.
    Skuratov, V. A.
    INTERNATIONAL CONFERENCE ON MICRO- AND NANO-ELECTRONICS 2018, 2019, 11022
  • [36] Investigation of thermal distribution of Ga in SiO2/Si structure
    Pei, SH
    Sun, HB
    Xiu, XW
    Zhang, XH
    Jiang, YQ
    RARE METAL MATERIALS AND ENGINEERING, 2005, 34 (02) : 275 - 278
  • [37] Second-harmonic spectroscopy of electronic structure of Si/SiO2 multiple quantum wells
    Dolgova, TV
    Avramenko, VG
    Nikulin, AA
    Marowsky, G
    Pudonin, AF
    Fedyanin, AA
    Aktsipetrov, OA
    APPLIED PHYSICS B-LASERS AND OPTICS, 2002, 74 (7-8): : 671 - 675
  • [38] Second-harmonic spectroscopy of electronic structure of Si/SiO2 multiple quantum wells
    T.V. Dolgova
    V.G. Avramenko
    A.A. Nikulin
    G. Marowsky
    A.F. Pudonin
    A.A. Fedyanin
    O.A. Aktsipetrov
    Applied Physics B, 2002, 74 : 671 - 675
  • [39] Single-particle states in spherical Si/SiO2 quantum dots
    Moskalenko, A. S.
    Berakdar, J.
    Prokofiev, A. A.
    Yassievich, I. N.
    PHYSICAL REVIEW B, 2007, 76 (08)
  • [40] Functionalization of nc-Si/SiO2 semiconductor quantum dots by oligonucleotides
    F. B. Bayramov
    E. D. Poloskin
    A. A. Kornev
    A. L. Chernev
    V. V. Toporov
    M. V. Dubina
    C. Röder
    C. Sprung
    H. Lipsanen
    B. H. Bairamov
    Semiconductors, 2014, 48 : 1485 - 1489