Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits

被引:59
|
作者
Maria Alonso-Valerdi, Luz [1 ]
Antonio Salido-Ruiz, Ricardo [2 ]
Ramirez-Mendoza, Ricardo A. [1 ]
机构
[1] Tecnologico Monterrey, Escuela Ingn & Ciencias, Mexico City 14380, DF, Mexico
[2] Univ Guadalajara, Dept Ciencias Computac, Div Elect & Computac, Ctr Univ Ciencias Exactas & Ingn, Guadalajara 44430, Jalisco, Mexico
关键词
Brain-machine interface; Brain-computer interface; Post-stroke rehabilitation; Motor imagery; UPPER-LIMB RECOVERY; STROKE REHABILITATION; NEUROREHABILITATION; ERD;
D O I
10.1016/j.neuropsychologia.2015.09.012
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:354 / 363
页数:10
相关论文
共 50 条
  • [31] Motor imagery and direct brain-computer communication
    Pfurtscheller, G
    Neuper, C
    [J]. PROCEEDINGS OF THE IEEE, 2001, 89 (07) : 1123 - 1134
  • [32] Closed-loop motor imagery EEG simulation for brain-computer interfaces
    Shin, Hyonyoung
    Suma, Daniel
    He, Bin
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [33] Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces
    Jia, Tianwang
    Meng, Lubin
    Li, Siyang
    Liu, Jiajing
    Wu, Dongrui
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 3442 - 3451
  • [34] Relation Learning Using Temporal Episodes for Motor Imagery Brain-Computer Interfaces
    Huang, Xiuyu
    Liang, Shuang
    Zhang, Yuanpeng
    Zhou, Nan
    Pedrycz, Witold
    Choi, Kup-Sze
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 530 - 543
  • [35] Privacy-Preserving Domain Adaptation for Motor Imagery-Based Brain-Computer Interfaces
    Xia, Kun
    Deng, Lingfei
    Duch, Wlodzislaw
    Wu, Dongrui
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (11) : 3365 - 3376
  • [36] Multi-class motor imagery EEG decoding for brain-computer interfaces
    Wang, Deng
    Miao, Duoqian
    Blohm, Gunnar
    [J]. FRONTIERS IN NEUROSCIENCE, 2012, 6
  • [37] Advanced TSGL-EEGNet for Motor Imagery EEG-Based Brain-Computer Interfaces
    Deng, Xin
    Zhang, Boxian
    Yu, Nian
    Liu, Ke
    Sun, Kaiwei
    [J]. IEEE ACCESS, 2021, 9 : 25118 - 25130
  • [38] EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges
    Padfield, Natasha
    Zabalza, Jaime
    Zhao, Huimin
    Masero, Valentin
    Ren, Jinchang
    [J]. SENSORS, 2019, 19 (06)
  • [39] Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces
    Dai, Shengfa
    Wei, Qingguo
    [J]. JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2017, 16 (03) : 241 - 254
  • [40] Channel Selection for Optimal EEG Measurement in Motor Imagery-Based Brain-Computer Interfaces
    Arpaia, Pasquale
    Donnarumma, Francesco
    Esposito, Antonio
    Parvis, Marco
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (03)