THE LEFT RIEMANN-LIOUVILLE FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS

被引:17
|
作者
Kunt, Mehmet [1 ]
Karapinar, Dunya [1 ]
Turhan, Sercan [2 ]
Iscan, Imdat [2 ]
机构
[1] Karadeniz Tech Univ, Dept Math, Fac Sci, TR-61080 Trabzon, Turkey
[2] Giresun Univ, Dept Math, Fac Sci & Arts, TR-28200 Giresun, Turkey
关键词
convex functions; Hermite-Hadamard inequalities; left Riemann-Liouville fractional integral; trapezoid type inequalities; midpoint type inequalities; DIFFERENTIABLE MAPPINGS;
D O I
10.1515/ms-2017-0261
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, with a new approach, a new fractional Hermite-Hadamard type inequalities for convex functions is obtained by using only the left Riemann-Liouville fractional integral. Also, to have new fractional trapezoid and midpoint type inequalities for the differentiable convex functions, two new equalities are proved. Our results generalize earlier studies. We expect that this study will be lead to the new fractional integration studies for Hermite-Hadamard type inequalities.
引用
收藏
页码:773 / 784
页数:12
相关论文
共 50 条
  • [31] FRACTIONAL TYPE HERMITE-HADAMARD INEQUALITIES FOR CONVEX AND AG(Log)-CONVEX FUNCTIONS
    Luo, Zijian
    Wang, JinRong
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (05): : 649 - 662
  • [32] On the Fractional Hermite-Hadamard Type Inequalities for (α, m)-Logarithmically Convex Functions
    Wang, JinRong
    Liao, Yumei
    Deng, JianHua
    FILOMAT, 2015, 29 (07) : 1565 - 1580
  • [33] Riemann-Liouville fractional Hermite-Hadamard inequalities. Part I: for once differentiable geometric-arithmetically s-convex functions
    Liao, YuMei
    Deng, JianHua
    Wang, JinRong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [34] Riemann-Liouville fractional Hermite-Hadamard inequalities. Part II: for twice differentiable geometric-arithmetically s-convex functions
    Liao, YuMei
    Deng, JianHua
    Wang, JinRong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [35] Riemann-Liouville fractional Hermite-Hadamard inequalities. Part II: for twice differentiable geometric-arithmetically s-convex functions
    YuMei Liao
    JianHua Deng
    JinRong Wang
    Journal of Inequalities and Applications, 2013
  • [36] Riemann-Liouville fractional Hermite-Hadamard inequalities. Part I: for once differentiable geometric-arithmetically s-convex functions
    YuMei Liao
    JianHua Deng
    JinRong Wang
    Journal of Inequalities and Applications, 2013
  • [37] The Hermite-Hadamard-Jensen-Mercer Type Inequalities for Riemann-Liouville Fractional Integral
    Wang, Hua
    Khan, Jamroz
    Adil Khan, Muhammad
    Khalid, Sadia
    Khan, Rewayat
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [38] On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals
    Abdeljawad, Thabet
    Ali, Muhammad Aamir
    Mohammed, Pshtiwan Othman
    Kashuri, Artion
    AIMS MATHEMATICS, 2021, 6 (01): : 712 - 725
  • [39] ON THE HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS VIA HADAMARD FRACTIONAL INTEGRALS
    Peng, Shan
    Wei, Wei
    Wang, JinRong
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2014, 29 (01): : 55 - 75
  • [40] ON SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR CONVEX FUNCTIONS
    Sarikaya, Mehmet Zeki
    Avci, Merve
    Kavurmaci, Havva
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 852 - +