On functional identities involving quasi-polynomials of degree one

被引:1
|
作者
Chebotar, MA
Fong, Y
Shiao, LS
机构
[1] Tula State Univ, Dept Mech & Math, Tula 300600, Russia
[2] Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
[3] Natl Kaohsiung Normal Univ, Dept Math, Kaohsiung, Taiwan
关键词
functional identities; quasi-polynomials;
D O I
10.1081/AGB-120037819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of quasi-polynomials is very important in the theory of functional identities. For example, results on quasi-polynomials were tools in the solution of long-standing Herstein's Lie map conjectures. In this paper, we show that functional identities involving quasi-polynomial of degree one have only standard solutions on d-free sets.
引用
收藏
页码:3673 / 3683
页数:11
相关论文
共 50 条
  • [21] IDENTIFICATION OF PROCESSES BY GENERALIZED EXPONENTIAL QUASI-POLYNOMIALS
    DANICH, VN
    SEMESENKO, MP
    AVTOMATIKA, 1988, (03): : 25 - 30
  • [22] WORPITZKY PARTITIONS FOR ROOT SYSTEMS AND CHARACTERISTIC QUASI-POLYNOMIALS
    Yoshinaga, Masahiko
    TOHOKU MATHEMATICAL JOURNAL, 2018, 70 (01) : 39 - 63
  • [23] Simple proof of stability criterion for interval quasi-polynomials
    Fang, B.
    IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (17): : 2033 - 2038
  • [24] Comparison on the coefficients of characteristic quasi-polynomials of integral arrangements
    Chen, Beifang
    Wang, Suijie
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (01) : 271 - 281
  • [25] PICK'S FORMULA AND GENERALIZED EHRHART QUASI-POLYNOMIALS
    Hibi, Takayuki
    Nakamura, Miyuki
    Natalia, Ivana
    Samudro, Kristantyo
    Tsuchiya, Akiyoshi
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2015, 21 (02) : 71 - 75
  • [26] Presburger Arithmetic, Rational Generating Functions, and Quasi-Polynomials
    Woods, Kevin
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT II, 2013, 7966 : 410 - 421
  • [27] Geometric Invariant Theory and Stretched Kostka Quasi-Polynomials
    Besson, Marc
    Jeralds, Sam
    Kiers, Joshua
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (05)
  • [28] Quasi-Polynomials and the Singular [Q, R]=0 Theorem
    Loizides, Yiannis
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2019, 15
  • [29] Counting chemical compositions using Ehrhart quasi-polynomials
    Shane L. Hubler
    Gheorghe Craciun
    Journal of Mathematical Chemistry, 2012, 50 : 2446 - 2470
  • [30] Dynamical Bethe algebra and functions on pairs of quasi-polynomials
    Varchenko, A. N.
    Slinkin, A. M.
    Thompson, D.
    RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (04) : 653 - 684