On functional identities involving quasi-polynomials of degree one

被引:1
|
作者
Chebotar, MA
Fong, Y
Shiao, LS
机构
[1] Tula State Univ, Dept Mech & Math, Tula 300600, Russia
[2] Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
[3] Natl Kaohsiung Normal Univ, Dept Math, Kaohsiung, Taiwan
关键词
functional identities; quasi-polynomials;
D O I
10.1081/AGB-120037819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of quasi-polynomials is very important in the theory of functional identities. For example, results on quasi-polynomials were tools in the solution of long-standing Herstein's Lie map conjectures. In this paper, we show that functional identities involving quasi-polynomial of degree one have only standard solutions on d-free sets.
引用
收藏
页码:3673 / 3683
页数:11
相关论文
共 50 条
  • [1] Quasi-polynomials of Capelli
    Antonov, S. Yu
    Antonova, A., V
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2015, 15 (04): : 371 - 382
  • [2] Hermite quasi-polynomials
    Marikhin, V. G.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (05) : 931 - 933
  • [3] The Distribution of Zeros of Quasi-Polynomials
    Wang, Honghai
    Han, Qing-Long
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (02) : 301 - 304
  • [4] Rational Ehrhart quasi-polynomials
    Linke, Eva
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (07) : 1966 - 1978
  • [5] Difference dimension quasi-polynomials
    Levin, Alexander
    ADVANCES IN APPLIED MATHEMATICS, 2017, 89 : 1 - 17
  • [6] Families of stable quasi-polynomials
    Kharitonov, V.L.
    Avtomatika i Telemekhanika, 1991, (07): : 75 - 88
  • [7] The Distribution of Zeros of Quasi-Polynomials
    Honghai Wang
    Qing-Long Han
    IEEE/CAA Journal of Automatica Sinica, 2023, 10 (02) : 301 - 304
  • [8] The unreasonable ubiquitousness of quasi-polynomials
    Woods, Kevin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [9] Degrees of the stretched Kostka quasi-polynomials
    Gao, Shiliang
    Gao, Yibo
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (05) : 1748 - 1761
  • [10] Quasi-Polynomials of Capelli. II
    Antonov, S. Yu
    Antonova, A., V
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2020, 20 (01): : 4 - 16