Monte Carlo transition dynamics and variance reduction

被引:78
|
作者
Fitzgerald, M [1 ]
Picard, RR [1 ]
Silver, RN [1 ]
机构
[1] Univ Calif Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
statistical mechanics; variance reduction; Monte Carlo algorithms; Metropolis algorithm; statistical estimators; Ising model; histogram methods; transition probabilities;
D O I
10.1023/A:1018635108073
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For Metropolis Monte Carlo simulations in statistical physics, efficient, easy-to-implement, and unbiased statistical estimators of thermodynamic properties are based on the transition dynamics. Using an Ising model example, we demonstrate (problem-specific) variance reductions compared to conventional histogram estimators. A proof of variance reduction in a microstate limit is presented.
引用
收藏
页码:321 / 345
页数:25
相关论文
共 50 条