Quantum chromodynamics at high energy and statistical physics

被引:27
|
作者
Munier, S. [1 ]
机构
[1] Ecole Polytech, CNRS, Ctr Phys Theor, F-91128 Palaiseau, France
来源
关键词
Quantum chromodynamics; Color dipole model; Color glass condensate; Stochastic fronts; Traveling waves; Reaction-diffusion; ZERO TRANSVERSE DIMENSIONS; DEEP-INELASTIC-SCATTERING; COLOR GLASS CONDENSATE; GLUON DISTRIBUTION-FUNCTIONS; BFKL POMERON CALCULUS; SMALL-X; UNITARITY CORRECTIONS; SATURATION SCALE; DIPOLE PICTURE; QCD EVOLUTION;
D O I
10.1016/j.physrep.2009.02.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When hadrons scatter at high energies, strong color fields, whose dynamics is described by quantum chromodynamics (QCD), are generated at the interaction point. If one represents these fields in terms of partons (quarks and gluons), the average number densities of the latter saturate at ultrahigh energies. At that point, nonlinear effects become predominant in the dynamical equations. The hadronic states that one gets in this regime of QCD are generically called "color glass condensates". Our understanding of scattering in QCD has benefited from recent progress in statistical and mathematical physics. The evolution of hadronic scattering amplitudes at fixed impact parameter in the regime where nonlinear parton saturation effects become sizable was shown to be similar to the time evolution of a system of classical particles undergoing reaction-diffusion processes. The dynamics of such a system is essentially governed by equations in the universality class of the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation, which is a stochastic nonlinear partial differential equation. Realizations of that kind of equations (that is, "events" in a particle physics language) have the form of noisy traveling waves. Universal properties of the latter can be taken over to scattering amplitudes in QCD. This review provides an introduction to the basic methods of statistical physics useful in QCD, and summarizes the correspondence between these two fields and its theoretical and phenomenological implications. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 49
页数:49
相关论文
共 50 条
  • [41] CHROMODYNAMICS OF HIGH-ENERGY IMPACT
    ABRAHAM, FF
    RUDGE, WE
    CHEMICAL PHYSICS, 1989, 129 (02) : 263 - 271
  • [42] High Spin Baryons in Quantum Mechanical Chromodynamics
    Kirchbach, M.
    Compean, C. B.
    PARTICLES AND FIELDS, 2009, 1116 : 334 - 342
  • [43] LIGHT-FRONT QUANTUM CHROMODYNAMICS A framework for the analysis of hadron physics
    Bakker, B. L. G.
    Bassetto, A.
    Brodsky, S. J.
    Broniowski, W.
    Dalley, S.
    Frederico, T.
    Glazek, S. D.
    Hiller, J. R.
    Ji, C. -R.
    Karmanov, V.
    Kulshreshtha, D.
    Mathiot, J. -F.
    Melnitchouk, W.
    Miller, G. A.
    Papavassiliou, J.
    Polyzou, W. N.
    Stefanis, N. G.
    Vary, J. P.
    Ilderton, A.
    Heinzl, T.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2014, 251 : 165 - 174
  • [44] The order of the quantum chromodynamics transition predicted by the standard model of particle physics
    Y. Aoki
    G. Endrődi
    Z. Fodor
    S. D. Katz
    K. K. Szabó
    Nature, 2006, 443 : 675 - 678
  • [45] Mapping the phases of quantum chromodynamics with beam energy scan
    Bzdak, Adam
    Esumi, ShinIchi
    Koch, Volker
    Liao, Jinfeng
    Stephanov, Mikhail
    Xu, Nu
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2020, 853 : 1 - 87
  • [46] Quantum data learning for quantum simulations in high-energy physics
    Nagano, Lento
    Miessen, Alexander
    Onodera, Tamiya
    Tavernelli, Ivano
    Tacchino, Francesco
    Terashi, Koji
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [47] HIGH-DENSITY LIMIT OF QUANTUM CHROMODYNAMICS
    ALVAREZ, E
    PHYSICAL REVIEW D, 1983, 28 (08): : 2085 - 2090
  • [48] Unsupervised quantum circuit learning in high energy physics
    Delgado, Andrea
    Hamilton, Kathleen E.
    PHYSICAL REVIEW D, 2022, 106 (09)
  • [49] Testing Quantum Mechanics in High-Energy Physics
    Hiesmayr, Beatrix C.
    THEORETICAL FOUNDATIONS OF QUANTUM INFORMATION PROCESSING AND COMMUNICATION, 2010, 787 : 141 - 185
  • [50] QUANTUM CHROMODYNAMICS
    K.A.Olive
    K.Agashe
    C.Amsler
    M.Antonelli
    J.-F.Arguin
    D.M.Asner
    H.Baer
    H.R.Band
    R.M.Barnett
    T.Basaglia
    C.W.Bauer
    J.J.Beatty
    V.I.Belousov
    J.Beringer
    G.Bernardi
    S.Bethke
    H.Bichsel
    O.Biebe
    E.Blucher
    S.Blusk
    G.Brooijmans
    O.Buchmueller
    V.Burkert
    M.A.Bychkov
    R.N.Cahn
    M.Carena
    A.Ceccucci
    A.Cerr
    D.Chakraborty
    M.-C.Chen
    R.S.Chivukula
    K.Copic
    G.Cowan
    O.Dahl
    G.D’Ambrosio
    T.Damour
    D.de Florian
    A.de Gouvea
    T.DeGrand
    P.de Jong
    G.Dissertor
    B.A.Dobrescu
    M.Doser
    M.Drees
    H.K.Dreiner
    D.A.Edwards
    S.Eidelman
    J.Erler
    V.V.Ezhela
    W.Fetscher
    Chinese Physics C, 2014, 38 (09) : 122 - 138