Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles

被引:51
|
作者
Krishen, Kumar [1 ]
机构
[1] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA
关键词
BIOMIMETIC SENSORS; SPACEFLIGHT;
D O I
10.1016/j.actaastro.2009.01.008
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Ionic polymer-metal composites (IPMCs) are composites of a noble metal, conductive polymer or carbon/graphite, and charged polyelectrolyte membrane. IPMCs have shown considerable progress in producing actuation in electric fields. These composites are also capable of sensing motion by producing a voltage difference when bent by a mechanical force. Work to date has yielded a force greater than 40 times the weight of an IPMC and large bending displacements with very low-input voltages. There is sufficient reason to believe that artificial muscles with viable strength can be produced with these composites. The IPMC, in addition to being resilient and elastic, is also lightweight and has a reaction speed that ranges from I microsecond to I second. For space missions, devices based on IPMCs will have numerous applications. On planetary surfaces, robotic arms and end effectors, motion-producing motors, actuators, and controllers are just a few examples of devices that can be produced using IPMCs. In this paper, examples of various envisioned space applications of IPMCs will be provided. The impacts of these applications on future space missions will also be discussed. Published by Elsevier Ltd.
引用
收藏
页码:1160 / 1166
页数:7
相关论文
共 50 条
  • [41] The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMIC) artificial muscles
    Shahinpoor, M
    Kim, KJ
    SMART MATERIALS AND STRUCTURES, 2000, 9 (04) : 543 - 551
  • [42] Anisotropic surface roughness enhances bending response of ionic polymer-metal composite (IPMC) artificial muscles
    Stoimenov, Boyko L.
    Rossiter, Jonathan M.
    Mukai, Toshiharu
    SMART MATERIALS IV, 2007, 6413
  • [43] Bio-inspired robotic manta ray powered by ionic polymer-metal composite artificial muscles
    Chen, Zheng
    Um, Tae I.
    Bart-Smith, Hilary
    INTERNATIONAL JOURNAL OF SMART AND NANO MATERIALS, 2012, 3 (04) : 296 - 308
  • [44] Equivalent modeling for ionic polymer-metal composite actuators based on beam theories
    Lee, S
    Park, HC
    Kim, KJ
    SMART MATERIALS AND STRUCTURES, 2005, 14 (06) : 1363 - 1368
  • [45] Quasi-static positioning of ionic polymer-metal composite (IPMC) actuators
    Chen, Z
    Tan, XB
    Shahinpoor, M
    2005 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1 AND 2, 2005, : 60 - 65
  • [46] MODEL-BASED NONLINEAR CONTROL OF IONIC POLYMER-METAL COMPOSITE ACTUATORS
    Chen, Zheng
    Tan, Xiaobo
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2009, PTS A AND B, 2010, : 469 - 476
  • [47] Modeling and Control with Hysteresis and Creep of Ionic Polymer-Metal Composite (IPMC) Actuators
    Chen, Zhen
    Hao, Lina
    Xue, Dingyu
    Xu, Xinhe
    Liu, Yanmei
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 865 - +
  • [48] A nonlinear, control-oriented model for ionic polymer-metal composite actuators
    Chen, Zheng
    Hedgepeth, Dawn Rochelle
    Tan, Xiaobo
    SMART MATERIALS AND STRUCTURES, 2009, 18 (05)
  • [49] Kinematically stable bipedal locomotion using ionic polymer-metal composite actuators
    Hosseinipour, Milad
    Elahinia, Mohammad
    SMART MATERIALS AND STRUCTURES, 2013, 22 (08)
  • [50] A biomimetic undulatory tadpole robot using ionic polymer-metal composite actuators
    Kim, B
    Kim, DH
    Jung, JH
    Park, JO
    SMART MATERIALS AND STRUCTURES, 2005, 14 (06) : 1579 - 1585