On First-Order Expressibility of Satisfiability in Submodels

被引:1
|
作者
Saveliev, Denis I. [1 ,2 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
[2] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Satisfiability in submodels; Infinitary language; Large cardinal; Ultraproduct; Model-theoretic language; Logic of submodels;
D O I
10.1007/978-3-662-59533-6_35
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let kappa, lambda be regular cardinals, lambda <= kappa, let phi be a sentence of the language L-kappa,L-lambda in a given signature, and let v(phi) express the fact that phi holds in a submodel, i.e., any model in the signature satisfies v(phi) if and only if some submodel B of U satisfies phi. It was shown in [1] that, whenever phi is in L-kappa,L-omega in the signature having less than kappa functional symbols (and arbitrarily many predicate symbols), then v(phi) is equivalent to a monadic existential sentence in the second-order language L-kappa,omega(2), and that for any signature having at least one binary predicate symbol there exists phi in L-omega,L-omega such that v(phi) is not equivalent to any (first-order) sentence in L-infinity,L-omega. Nevertheless, in certain cases v(phi) are first-order expressible. In this note, we provide several (syntactical and semantical) characterizations of the case when v(phi) is in L-kappa,L-kappa and kappa is omega or a certain large cardinal.
引用
收藏
页码:584 / 593
页数:10
相关论文
共 50 条
  • [21] First-order stable model semantics and first-order loop formulas
    Lee J.
    Meng Y.
    Journal of Artificial Intelligence Research, 2011, 42 : 125 - 180
  • [22] First-Order Stable Model Semantics and First-Order Loop Formulas
    Lee, Joohyung
    Meng, Yunsong
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2011, 42 : 125 - 180
  • [23] FIRST-ORDER FRIENDLINESS
    Badia, Guillermo
    Makinson, David
    REVIEW OF SYMBOLIC LOGIC, 2024, 17 (04): : 1055 - 1069
  • [24] First-order leveling
    Avers, HG
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1926, 7 (56): : 50 - 51
  • [25] Is science first-order?
    Meyer, U
    ANALYSIS, 2002, 62 (04) : 305 - 308
  • [26] First-order Glue
    Kokkonidis M.
    Journal of Logic, Language and Information, 2008, 17 (1) : 43 - 68
  • [27] A First-Order Calculus for Allegories
    Aameri, Bahar
    Winter, Michael
    RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE, 2011, 6663 : 74 - 91
  • [28] A First-Order Logic with Frames
    Murali, Adithya
    Pena, Lucas
    Loeding, Christof
    Madhusudan, P.
    PROGRAMMING LANGUAGES AND SYSTEMS ( ESOP 2020): 29TH EUROPEAN SYMPOSIUM ON PROGRAMMING, 2020, 12075 : 515 - 543
  • [29] The First-Order Nominal Link
    Calves, Christophe
    Fernandez, Maribel
    LOGIC-BASED PROGRAM SYNTHESIS AND TRANSFORMATION, 2011, 6564 : 234 - 248
  • [30] Extended First-Order Logic
    Brown, Chad E.
    Smolka, Gert
    THEOREM PROVING IN HIGHER ORDER LOGICS, PROCEEDINGS, 2009, 5674 : 164 - 179