Rapid and Resilient Detection of Toxin Pore Formation Using a Lipid Bilayer Array

被引:6
|
作者
Ito, Yoshihisa [1 ,2 ]
Osaki, Toshihisa [1 ,3 ]
Kamiya, Koki [1 ,6 ]
Yamada, Tetsuya [1 ,7 ]
Miki, Norihisa [1 ,4 ]
Takeuchi, Shoji [1 ,3 ,5 ]
机构
[1] Kanagawa Inst Ind Sci & Technol, Artificial Cell Membrane Syst Grp, Takatsu Ku, 3-2-1 Sakado, Kawasaki, Kanagawa 2130012, Japan
[2] Keio Univ, Ctr Multidisciplinary & Design Sci, Sch Integrated Design Engn, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
[3] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
[4] Keio Univ, Dept Mech Engn, Fac Sci & Technol, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
[5] Univ Tokyo, Dept Mechanoinformat, Grad Sch Informat Sci & Technol, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[6] Gunma Univ, Div Mol Sci, Grad Sch Sci & Technol, 1-5-1 Tenjin Cho, Kiryu, Gumma 3768515, Japan
[7] Tokyo Inst Technol, Lab Feature Interdisciplinary Res Sci & Technol, Midori Ku, 4259 Nagatsuta Cho, Yokohama, Kanagawa 2268502, Japan
关键词
electrophysiological analysis; planar bilayer lipid membranes; pore‐ forming proteins; stochastic process; ION CHANNELS; TRANSLOCATION; DNA;
D O I
10.1002/smll.202005550
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An artificial cell membrane is applied to study the pore formation mechanisms of bacterial pore-forming toxins for therapeutic applications. Electrical monitoring of ionic current across the membrane provides information on the pore formation process of toxins at the single pore level, as well as the pore characteristics such as dimensions and ionic selectivity. However, the efficiency of pore formation detection largely depends on the encounter probability of toxin to the membrane and the fragility of the membrane. This study presents a bilayer lipid membrane array that parallelizes 4 or 16 sets of sensing elements composed of pairs of a membrane and a series electrical resistor. The series resistor prevents current overflow attributed to membrane rupture, and enables current monitoring of the parallelized membranes with a single detector. The array system shortens detection time of a pore-forming protein and improves temporal stability. The current signature represents the states of pore formation and rupture at respective membranes. The developed system will help in understanding the toxic activity of pore-forming toxins.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] PORE FORMATION BY STAPHYLOCOCCUS-AUREUS ALPHA-TOXIN IN LIPID BILAYERS - DEPENDENCE UPON TEMPERATURE AND TOXIN CONCENTRATION
    BELMONTE, G
    CESCATTI, L
    FERRARI, B
    NICOLUSSI, T
    ROPELE, M
    MENESTRINA, G
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 1987, 14 (06): : 349 - 358
  • [42] Molecular engineering of tethered bilayer lipid membranes for impedimetric detection of pore-forming toxins
    Sabirovas, Tomas
    Talaikis, Martynas
    Tamulyte, Rimgaile
    Polita, Arturas
    Pudzaitis, Vaidas
    Niaura, Gediminas
    Vanderah, David J.
    Valincius, Gintaras
    ELECTROCHIMICA ACTA, 2024, 508
  • [43] Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore
    Akimov, Sergey A.
    Volynsky, Pavel E.
    Galimzyanov, Timur R.
    Kuzmin, Peter I.
    Pavlov, Konstantin V.
    Batishchev, Oleg V.
    SCIENTIFIC REPORTS, 2017, 7
  • [44] Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore
    Sergey A. Akimov
    Pavel E. Volynsky
    Timur R. Galimzyanov
    Peter I. Kuzmin
    Konstantin V. Pavlov
    Oleg V. Batishchev
    Scientific Reports, 7
  • [45] A study of pore formation in lipid bilayers by modular nanotransporters containing the diphtheria toxin translocation domain
    Rosenkranz, A. A.
    Khramtsov, Yu. V.
    Trusov, G. A.
    Gnuchev, N. V.
    Sobolev, A. S.
    DOKLADY BIOCHEMISTRY AND BIOPHYSICS, 2008, 421 (01) : 244 - 246
  • [46] Pore formation by equinatoxin II, a eukaryotic protein toxin, occurs by induction of nonlamellar lipid structures
    Anderluh, G
    Dalla Serra, M
    Viero, G
    Guella, G
    Macek, P
    Menestrina, G
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (46) : 45216 - 45223
  • [47] A study of pore formation in lipid bilayers by modular nanotransporters containing the diphtheria toxin translocation domain
    A. A. Rosenkranz
    Yu. V. Khramtsov
    G. A. Trusov
    N. V. Gnuchev
    A. S. Sobolev
    Doklady Biochemistry and Biophysics, 2008, 421 : 244 - 246
  • [48] Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: The effect of molecular shape
    Lee, Hwankyu
    Larson, Ronald G.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (39): : 12279 - 12285
  • [49] Pore formation in lipid bilayer membranes made of phosphatidylinositol and oxidized cholesterol followed by means of alternating current
    Gallucci, E
    Micelli, S
    Monticelli, G
    BIOPHYSICAL JOURNAL, 1996, 71 (02) : 824 - 831
  • [50] Insertion and pore formation driven by adsorption of proteins onto lipid bilayer membrane-water interfaces
    Zuckermann, MJ
    Heimburg, T
    BIOPHYSICAL JOURNAL, 2001, 81 (05) : 2458 - 2472