Applications of Laplacian spectrum for the vertex-vertex graph

被引:2
|
作者
Ju, Tingting [1 ]
Dai, Meifeng [1 ]
Dai, Changxi [1 ]
Sun, Yu [1 ]
Song, Xiangmei [2 ]
Su, Weiyi [3 ]
机构
[1] Jiangsu Univ, Inst Appl Syst Anal, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Sch Comp Sci & Telecommun Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2019年 / 33卷 / 17期
关键词
Vertex-vertex graph; Laplacian spectrum; first-order network coherence; second-order network coherence; Kirchhoff index; spanning tree; Laplacian-energy-like; SPANNING-TREES; SCALE-FREE; ENERGY;
D O I
10.1142/S0217984919501847
中图分类号
O59 [应用物理学];
学科分类号
摘要
Complex networks have attracted a great deal of attention from scientific communities, and have been proven as a useful tool to characterize the topologies and dynamics of real and human-made complex systems. Laplacian spectrum of the considered networks plays an essential role in their network properties, which have a wide range of applications in chemistry and others. Firstly, we define one vertex-vertex graph. Then, we deduce the recursive relationship of its eigenvalues at two successive generations of the normalized Laplacian matrix, and we obtain the Laplacian spectrum for vertex-vertex graph. Finally, we show the applications of the Laplacian spectrum, i.e. first-order network coherence, second-order network coherence, Kirchhoff index, spanning tree, and Laplacian-energy-like.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Vertex Stress Polynomial of a Graph
    Rai, Prajna S.
    Rajendra, R.
    Reddy, P. Siva Kota
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [32] THE VERTEX MONOPHONIC NUMBER OF A GRAPH
    Santhakumaran, A. P.
    Titus, P.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (02) : 191 - 204
  • [33] On vertex ranking of a starlike graph
    Hsieh, SY
    INFORMATION PROCESSING LETTERS, 2002, 82 (03) : 131 - 135
  • [34] Reconfiguration of Vertex Covers in a Graph
    Ito, Takehiro
    Nooka, Hiroyuki
    Zhou, Xiao
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (03): : 598 - 606
  • [35] Super Vertex Cover of a Graph
    Canoy Jr, Sergio R.
    Bonsocan, Maria Andrea O.
    Hassan, Javier A.
    Mahistrado, Angelica Mae L.
    Bilar, Vergel T.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [36] Certified Vertex Cover of a Graph
    Hassan, Javier A.
    Bonsocan, Maria Andrea O.
    Rasid, Regimar A.
    Sappari, Amil-Shab S.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (02): : 1038 - 1045
  • [37] THE VERTEX STEINER NUMBER OF A GRAPH
    John, J.
    TRANSACTIONS ON COMBINATORICS, 2020, 9 (02) : 115 - 124
  • [38] Inserting a Vertex into a Planar Graph
    Chimani, Markus
    Gutwenger, Carsten
    Mutzel, Petra
    Wolf, Christian
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 375 - 383
  • [39] On the Vertex Geodomination Number of a Graph
    Santhakumaran, A. P.
    Titus, P.
    ARS COMBINATORIA, 2011, 101 : 137 - 151
  • [40] Vertex separators for partitioning a graph
    Evrendilek, Cem
    SENSORS, 2008, 8 (02) : 635 - 657