GRANGER CAUSALITY FOR FUNCTIONAL VALUED RANDOM PROCESSES

被引:0
|
作者
Amblard, Pierre-Olivier [1 ]
Michel, Olivier J. J. [1 ]
机构
[1] Univ Grenoble, UMR CNRS 5216, GIPSA Lab, Grenoble, France
关键词
Granger causality; graphs; functional data; Hilbert autoregressive processes; LINEAR-DEPENDENCE; FEEDBACK;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To assess influence or information exchange between functional valued signals, we propose to extend the notion of Granger causality when stochastic processes are series of random variables in functional Hilbert spaces. We give strong definitions for Granger causality and instantaneous coupling using conditional independence. We then discuss a weaker form of the definitions which are valid for second order wide sense stationary processes. This weaker approach relies on the Wold decomposition and its invertibility for these processes. The decomposition holds for discrete time signals that takes their values in infinite dimensional Hilbert spaces. We then discuss a possible framework to apply the theory. We propose causality measures that generalizes the measure proposed by Geweke in 1984 to the Hilbert space case. We illustrate and discuss the approach on the simple example of a trivariate autoregressive of order 1 process taking values in L-2 ([0; 1]).
引用
收藏
页码:216 / 220
页数:5
相关论文
共 50 条
  • [1] Granger Causality for Heterogeneous Processes
    Behzadi, Sahar
    Hlavackova-Schindler, Katerina
    Plant, Claudia
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT III, 2019, 11441 : 463 - 475
  • [2] Learning Granger Causality for Hawkes Processes
    Xu, Hongteng
    Farajtabar, Mehrdad
    Zha, Hongyuan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [3] Conditional Granger causality of diffusion processes
    Wahl, Benjamin
    Feudel, Ulrike
    Hlinka, Jaroslav
    Waechter, Matthias
    Peinke, Joachim
    Freund, Jan A.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (10):
  • [4] Granger causality and the sampling of economic processes
    McCrorie, J. Roderick
    Chambers, Marcus J.
    [J]. JOURNAL OF ECONOMETRICS, 2006, 132 (02) : 311 - 336
  • [5] Conditional Granger causality of diffusion processes
    Benjamin Wahl
    Ulrike Feudel
    Jaroslav Hlinka
    Matthias Wächter
    Joachim Peinke
    Jan A. Freund
    [J]. The European Physical Journal B, 2017, 90
  • [6] Granger causality and contiguity between stochastic processes
    Triacca, Umberto
    [J]. PHYSICS LETTERS A, 2007, 362 (04) : 252 - 255
  • [7] Granger causality and information flow in multivariate processes
    Blinowska, KJ
    Kus, R
    Kaminski, M
    [J]. PHYSICAL REVIEW E, 2004, 70 (05): : 4
  • [8] Granger-causality maps of diffusion processes
    Wahl, Benjamin
    Feudel, Ulrike
    Hlinka, Jaroslav
    Waechter, Matthias
    Peinke, Joachim
    Freund, Jan A.
    [J]. PHYSICAL REVIEW E, 2016, 93 (02)
  • [9] Assessing Thalamocortical Functional Connectivity With Granger Causality
    Chen, Cheng
    Maybhate, Anil
    Israel, David
    Thakor, Nitish V.
    Jia, Xiaofeng
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2013, 21 (05) : 725 - 733
  • [10] Valued added taxation and industrial sector productivity: a granger causality approach
    Omodero, Cordelia Onyinyechi
    Eriabie, Sylvester
    [J]. COGENT BUSINESS & MANAGEMENT, 2022, 9 (01):