Granger Causality for Heterogeneous Processes

被引:4
|
作者
Behzadi, Sahar [1 ]
Hlavackova-Schindler, Katerina [1 ]
Plant, Claudia [1 ,2 ]
机构
[1] Univ Vienna, Fac Comp Sci, Data Min, Vienna, Austria
[2] Univ Vienna, Ds UniVie, Vienna, Austria
关键词
D O I
10.1007/978-3-030-16142-2_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Discovery of temporal structures and finding causal interactions among time series have recently attracted attention of the data mining community. Among various causal notions graphical Granger causality is well-known due to its intuitive interpretation and computational simplicity. Most of the current graphical approaches are designed for homogeneous datasets i.e. the interacting processes are assumed to have the same data distribution. Since many applications generate heterogeneous time series, the question arises how to leverage graphical Granger models to detect temporal causal dependencies among them. Profiting from the generalized linear models, we propose an efficient Heterogeneous Graphical Granger Model (HGGM) for detecting causal relation among time series having a distribution from the exponential family which includes a wider common distributions e.g. Poisson, gamma To guarantee the consistency of our algorithm we employ adaptive Lasso as a variable selection method. Extensive experiments on synthetic and real data confirm the effectiveness and efficiency of HGGM.
引用
收藏
页码:463 / 475
页数:13
相关论文
共 50 条
  • [1] Learning Granger Causality for Hawkes Processes
    Xu, Hongteng
    Farajtabar, Mehrdad
    Zha, Hongyuan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [2] Conditional Granger causality of diffusion processes
    Wahl, Benjamin
    Feudel, Ulrike
    Hlinka, Jaroslav
    Waechter, Matthias
    Peinke, Joachim
    Freund, Jan A.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (10):
  • [3] Conditional Granger causality of diffusion processes
    Benjamin Wahl
    Ulrike Feudel
    Jaroslav Hlinka
    Matthias Wächter
    Joachim Peinke
    Jan A. Freund
    [J]. The European Physical Journal B, 2017, 90
  • [4] Granger causality and the sampling of economic processes
    McCrorie, J. Roderick
    Chambers, Marcus J.
    [J]. JOURNAL OF ECONOMETRICS, 2006, 132 (02) : 311 - 336
  • [5] Testing for Granger causality in heterogeneous mixed panels
    Emirmahmutoglu, Furkan
    Kose, Nezir
    [J]. ECONOMIC MODELLING, 2011, 28 (03) : 870 - 876
  • [6] GRANGER CAUSALITY FOR FUNCTIONAL VALUED RANDOM PROCESSES
    Amblard, Pierre-Olivier
    Michel, Olivier J. J.
    [J]. 2014 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA), 2014, : 216 - 220
  • [7] Granger causality and contiguity between stochastic processes
    Triacca, Umberto
    [J]. PHYSICS LETTERS A, 2007, 362 (04) : 252 - 255
  • [8] Granger-causality maps of diffusion processes
    Wahl, Benjamin
    Feudel, Ulrike
    Hlinka, Jaroslav
    Waechter, Matthias
    Peinke, Joachim
    Freund, Jan A.
    [J]. PHYSICAL REVIEW E, 2016, 93 (02)
  • [9] Granger causality and information flow in multivariate processes
    Blinowska, KJ
    Kus, R
    Kaminski, M
    [J]. PHYSICAL REVIEW E, 2004, 70 (05): : 4
  • [10] Heterogeneous Graphical Granger Causality by Minimum Message Length
    Hlavackova-Schindler, Katerina
    Plant, Claudia
    [J]. ENTROPY, 2020, 22 (12) : 1 - 21