Multiscale entropy analysis of resting-state magnetoencephalogram with tensor factorisations in Alzheimer's disease

被引:33
|
作者
Escudero, Javier [1 ]
Acar, Evrim [2 ]
Fernandez, Alberto [3 ,4 ,5 ,6 ]
Bro, Rasmus [2 ]
机构
[1] Univ Edinburgh, Sch Engn, Inst Digital Commun, Edinburgh EH9 3FG, Midlothian, Scotland
[2] Univ Copenhagen, Fac Sci, DK-1958 Frederiksberg C, Denmark
[3] Univ Complutense Madrid, Dept Psiquiatria & Psicol Med, Madrid, Spain
[4] Univ Complutense Madrid, Ctr Biomed Technol, Lab Cognit & Computat Neurosci, E-28040 Madrid, Spain
[5] Tech Univ Madrid, Madrid, Spain
[6] San Carlos Univ Hosp, Inst Sanitary Invest IdISSC, Madrid, Spain
关键词
Alzheimer's disease; Brain activity; Complexity; Multiway analysis; PARAFAC; PARAFAC2; TIME-SERIES; EEG COMPLEXITY; DECOMPOSITIONS; MEG; INFORMATION; DYNAMICS;
D O I
10.1016/j.brainresbull.2015.05.001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Tensor factorisations have proven useful to model amplitude and spectral information of brain recordings. Here, we assess the usefulness of tensor factorisations in the multiway analysis of other brain signal features in the context of complexity measures recently proposed to inspect multiscale dynamics. We consider the "refined composite multiscale entropy" (rcMSE), which computes entropy "profiles" showing levels of physiological complexity over temporal scales for individual signals. We compute the rcMSE of resting-state magnetoencephalogram (MEG) recordings from 36 patients with Alzheimer's disease and 26 control subjects. Instead of traditional simple visual examinations, we organise the entropy profiles as a three-way tensor to inspect relationships across temporal and spatial scales and subjects with multiway data analysis techniques based on PARAFAC and PARAFAC2 factorisations. A PARAFAC2 model with two factors was appropriate to account for the interactions in the entropy tensor between temporal scales and MEG channels for all subjects. Moreover, the PARAFAC2 factors had information related to the subjects' diagnosis, achieving a cross-validated area under the ROC curve of 0.77. This confirms the suitability of tensor factorisations to represent electrophysiological brain data efficiently despite the unsupervised nature of these techniques. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:136 / 144
页数:9
相关论文
共 50 条
  • [21] Revolution of Resting-State Functional Neuroimaging Genetics in Alzheimer's Disease
    Chiesa, Patrizia A.
    Cavedo, Enrica
    Lista, Simone
    Thompson, Paul M.
    Hampel, Harald
    TRENDS IN NEUROSCIENCES, 2017, 40 (08) : 469 - 480
  • [22] Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer's disease
    Stam, C. J.
    Jones, B. F.
    Manshanden, I.
    van Walsum, A. M. van Cappellen
    Montez, T.
    Verbunt, J. P. A.
    de Munck, J. C.
    van Dijk, B. W.
    Berendse, H. W.
    Scheltens, P.
    NEUROIMAGE, 2006, 32 (03) : 1335 - 1344
  • [23] Random support vector machine cluster analysis of resting-state fMRI in Alzheimer's disease
    Bi, Xia-an
    Shu, Qing
    Sun, Qi
    Xu, Qian
    PLOS ONE, 2018, 13 (03):
  • [24] Resting-state fMRI Analysis of Alzheimer's Disease Progress Using Sparse Dictionary Learning
    Lee, Jeonghyeon
    Ye, Jong Chul
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1051 - 1053
  • [25] GROUP SPARSE DICTIONARY LEARNING AND INFERENCE FOR RESTING-STATE FMRI ANALYSIS OF ALZHEIMER'S DISEASE
    Lee, Jeonghyeon
    Jeong, Yong
    Ye, Jong Chul
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 540 - 543
  • [26] Analysis of electroencephalograms in Alzheimer's disease patients with multiscale entropy
    Escudero, J.
    Abasolo, D.
    Hornero, R.
    Espino, P.
    Lopez, M.
    PHYSIOLOGICAL MEASUREMENT, 2006, 27 (11) : 1091 - 1106
  • [27] Resting-state oscillatory brain dynamics in Alzheimer disease
    de Haan, Willem
    Stam, Cornelis J.
    Jones, Bethany F.
    Zuiderwijk, Ilonka M.
    van Dijk, Bob W.
    Scheltens, Philip
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2008, 25 (04) : 187 - 193
  • [28] Alterations of resting-state Gamma frequency characteristics in aging and Alzheimer's disease
    Guntekin, Bahar
    Erdal, Furkan
    Bolukbas, Burcu
    Hanoglu, Lutfu
    Yener, Gorsev
    Duygun, Rumeysa
    COGNITIVE NEURODYNAMICS, 2023, 17 (04) : 829 - 844
  • [29] Diagnosis of Alzheimer's disease using resting-state fMRI and graph theory
    Faskhodi, Mahtab Mohammadpoor
    Einalou, Zahra
    Dadgostar, Mehrdad
    TECHNOLOGY AND HEALTH CARE, 2018, 26 (06) : 921 - 931
  • [30] Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment
    Binnewijzend, Maja A. A.
    Schoonheim, Menno M.
    Sanz-Arigita, Ernesto
    Wink, Alle Meije
    van der Flier, Wiesje M.
    Tolboom, Nelleke
    Adriaanse, Sofie M.
    Damoiseaux, Jessica S.
    Scheltens, Philip
    van Berckel, Bart N. M.
    Barkhof, Frederik
    NEUROBIOLOGY OF AGING, 2012, 33 (09) : 2018 - 2028