共 50 条
Pathogenicity Islands in Shiga Toxin-Producing Escherichia coli O26, O103, and O111 Isolates from Humans and Animals
被引:9
|作者:
Ju, Wenting
[1
]
Rump, Lydia
[1
,2
]
Toro, Magaly
[1
]
Shen, Jinling
[1
,3
]
Cao, Guojie
[1
]
Zhao, Shaohua
[4
]
Meng, Jianghong
[1
,2
]
机构:
[1] Univ Maryland, Dept Nutr & Food Sci, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Inst Food Safety & Appl Nutr, College Pk, MD 20742 USA
[3] Zhangjiagang Entry Exit Inspect & Quarantine Bur, Zhangjiagang, Peoples R China
[4] US FDA, Div Anim & Food Microbiol, Res Off, Ctr Vet Med, Laurel, MD USA
关键词:
CLONAL GROUPS;
STRAINS;
ASSOCIATION;
GENE;
D O I:
10.1089/fpd.2013.1696
中图分类号:
TS2 [食品工业];
学科分类号:
0832 ;
摘要:
Non-O157 Shiga toxin-producing Escherichia coli (STEC) are increasingly recognized as foodborne pathogens worldwide. Serogroups O26, O111, and O103 cause most known outbreaks related to non-O157 STEC. Pathogenicity islands (PAIs) play a major role in the evolution of STEC pathogenicity. To determine the distribution of PAIs often associated with highly virulent STECs (OI-122, OI-43/48, OI-57, and high pathogenicity islands) among STEC O26, O103, and O111, a collection of STEC O26 (n=45), O103 (n=29), and O111 (n=52) from humans and animals were included in this study. Pulsed-field gel electrophoresis (PFGE) with XbaI digestion was used to characterize the clonal relationship of the strains. In addition, a polymerase chain reaction-restriction fragment length polymorphism assay was used to determine eae subtypes. Additional virulence genes on PAIs were identified using specific PCR assays, including OI-122: pagC, sen, efa-1, efa-2, and nleB; OI-43/48: terC, ureC, iha, and aidA-1; OI-57: nleG2-3, nleG5-2, and nleG6-2; and HPI: fyuA and irp2. A PFGE dendrogram demonstrated that instead of clustering together with strains from the same O type (O111:H8), the O111:H11 (n=14) strains clustered together with strains of the same H type (O26:H11, n=45). In addition, O26:H11 and O111:H11 strains carried eae subtype beta, whereas O111:H8 strains had eae gamma 2/theta. The O26:H11 and O111:H11 stains contained an incomplete OI-122 lacking pagC and a complete HPI. However, a complete OI-122 but no HPI was found in the O111:H8 strains. Additionally, aidA-1 of OI-43/48 and nleG6-2 of OI-57 were significantly associated with O26:H11 and O111:H11 strains but were almost missing in O111:H8 strains (p<0.001). This study demonstrated that H11 (O111:H11 and O26:H11) strains were closely related and may have come from the same ancestor.
引用
收藏
页码:342 / 345
页数:4
相关论文