Finite-size effects on the quasistatic displacement pulse in a solid specimen with quadratic nonlinearity

被引:39
|
作者
Nagy, Peter B. [1 ]
Qu, Jianmin [2 ]
Jacobs, Laurence J. [3 ]
机构
[1] Univ Cincinnati, Sch Aerosp Syst, Cincinnati, OH 45221 USA
[2] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA
[3] Georgia Inst Technol, Coll Engn, Atlanta, GA 30332 USA
来源
关键词
ACOUSTIC-RADIATION STRESS; WAVES; PROPAGATION; STRAIN;
D O I
10.1121/1.4817840
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
There is an unresolved debate in the scientific community about the shape of the quasistatic displacement pulse produced by nonlinear acoustic wave propagation in an elastic solid with quadratic nonlinearity. Early analytical and experimental studies suggested that the quasistatic pulse exhibits a right-triangular shape with the peak displacement of the leading edge being proportional to the length of the tone burst. In contrast, more recent theoretical, analytical, numerical, and experimental studies suggested that the quasistatic displacement pulse has a flat-top shape where the peak displacement is proportional to the propagation distance. This study presents rigorous mathematical analyses and numerical simulations of the quasistatic displacement pulse. In the case of semi-infinite solids, it is confirmed that the time-domain shape of the quasistatic pulse generated by a longitudinal plane wave is not a right-angle triangle. In the case of finite-size solids, the finite axial dimension of the specimen cannot simply be modeled with a linear reflection coefficient that neglects the nonlinear interaction between the combined incident and reflected fields. More profoundly, the quasistatic pulse generated by a transducer of finite aperture suffers more severe divergence than both the fundamental and second order harmonic pulses generated by the same transducer. (C) 2013 Acoustical Society of America.
引用
收藏
页码:1760 / 1774
页数:15
相关论文
共 50 条
  • [41] Finite-size effects for percolation on Apollonian networks
    Auto, Daniel M.
    Moreira, Andre A.
    Herrmann, Hans J.
    Andrade, Jose S., Jr.
    PHYSICAL REVIEW E, 2008, 78 (06)
  • [42] Finite-size effects in parametric subharmonic instability
    Bourget, Baptiste
    Scolan, Helene
    Dauxois, Thierry
    Le Bars, Michael
    Odier, Philippe
    Joubaud, Sylvain
    JOURNAL OF FLUID MECHANICS, 2014, 759 : 739 - 750
  • [43] Finite-size effects on gold and platinum clusters
    Li, Lin
    Larsen, Ask H.
    Romero, Nichols A.
    Abild-Pedersen, Frank
    Greeley, Jeffrey P.
    Norskov, Jens K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [44] Implicit finite-size effects in computer simulations
    Denton, AR
    Egelstaff, PA
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 103 (3-4): : 343 - 349
  • [45] FINITE-SIZE EFFECTS IN THE IDEAL FERMI GAS
    SUBRAHMANYAM, V
    BARMA, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (11): : L489 - L496
  • [46] FINITE-SIZE EFFECTS AND THE DEVILS STAIRCASE IN HOLMIUM
    STEINITZ, MO
    TINDALL, DA
    ADAMS, CP
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1995, 140 : 759 - 760
  • [47] Quantum Finite-Size Effects in Graphene Plasmons
    Thongrattanasiri, Sukosin
    Manjavacas, Alejandro
    Javier Garcia de Abajo, F.
    ACS NANO, 2012, 6 (02) : 1766 - 1775
  • [48] FINITE-SIZE AND SURFACE EFFECTS IN HEISENBERG FILMS
    RITCHIE, DS
    FISHER, ME
    PHYSICAL REVIEW B, 1973, 7 (01): : 480 - 494
  • [49] FINITE-SIZE EFFECTS AND PHASE-TRANSITIONS
    BERG, BA
    BILLOIRE, A
    SALVADOR, R
    PHYSICAL REVIEW D, 1988, 37 (12): : 3774 - 3777
  • [50] Anomalous finite-size effects in the Battle of the Sexes
    J. Cremer
    T. Reichenbach
    E. Frey
    The European Physical Journal B, 2008, 63 : 373 - 380