Block algorithms for reordering standard and generalized Schur forms

被引:11
|
作者
Kressner, Daniel [1 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
来源
关键词
algorithms; performance; Schur form; reordering; invariant subspace; deflating subspace;
D O I
10.1145/1186785.1186787
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Block algorithms for reordering a selected set of eigenvalues in a standard or generalized Schur form are proposed. Efficiency is achieved by delaying orthogonal transformations and (optionally) making use of level 3 BLAS operations. Numerical experiments demonstrate that existing algorithms, as currently implemented in LAPACK, are outperformed by up to a factor of four.
引用
收藏
页码:521 / 532
页数:12
相关论文
共 50 条
  • [41] AN EXTENSION OF THE GENERALIZED SCHUR INEQUALITY
    MOND, B
    PECARIC, JE
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1995, 52 (02) : 341 - 343
  • [42] The Schur algorithm for generalized Schur functions I: coisometric realizations
    Alpay, D
    Azizov, T
    Dijksma, A
    Langer, H
    SYSTEMS, APPROXIMATION, SINGULAR INTEGRAL OPERATORS, AND RELATED TOPICS, 2001, 129 : 1 - 36
  • [43] Generalized Schur functions and generalized decomposable symmetric tensors
    Lei, TG
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 263 : 311 - 332
  • [44] On Schur Forms for Matrices with Simple Eigenvalues
    Konstantinov, Mihail Mihaylov
    Petkov, Petko Hristov
    AXIOMS, 2024, 13 (12)
  • [45] A Task-Based Algorithm for Reordering the Eigenvalues of a Matrix in Real Schur Form
    Myllykoski, Mirko
    PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2017), PT I, 2018, 10777 : 207 - 216
  • [46] Reordering Algorithms for Increasing Locality on Multicore Processors
    Pichel, Juan C.
    Singh, David E.
    Carretero, Jesus
    HPCC 2008: 10TH IEEE INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS, PROCEEDINGS, 2008, : 123 - 130
  • [47] MATRIX-FORMS OF GENERALIZED FAST FOURIER-TRANSFORM ALGORITHMS
    SVERDLIK, MB
    TIKODRITOGBOA, SS
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1985, 39-4 (11) : 75 - 80
  • [48] Truncated normal forms for solving polynomial systems: Generalized and efficient algorithms
    Mourrain, Bernard
    Telen, Simon
    Van Barel, Marc
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 102 : 63 - 85
  • [49] THE BLOCK SCHUR PRODUCT IS A HADAMARD PRODUCT
    Christensen, Erik
    MATHEMATICA SCANDINAVICA, 2020, 126 (03) : 603 - 616
  • [50] Parallelization of Reordering Algorithms for Bandwidth and Wavefront Reduction
    Karantasis, Konstantinos I.
    Lenharth, Andrew
    Nguyen, Donald
    Garzaran, Maria J.
    Pingali, Keshav
    SC14: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2014, : 921 - 932