On the exact and ε-strong simulation of (jump) diffusions

被引:24
|
作者
Pollock, Murray [1 ]
Johansen, Adam M. [1 ]
Roberts, Gareth O. [1 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
adaptive exact algorithms; barrier crossing probabilities; Brownian path space probabilities; exact simulation; first hitting times; killed diffusions; BROWNIAN-MOTION; INFERENCE; PROBABILITY;
D O I
10.3150/14-BEJ676
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a framework for simulating finite dimensional representations of (jump) diffusion sample paths over finite intervals, without discretisation error (exactly), in such a way that the sample path can be restored at any finite collection of time points. Within this framework we extend existing exact algorithms and introduce novel adaptive approaches. We consider an application of the methodology developed within this paper which allows the simulation of upper and lower bounding processes which almost surely constrain (jump) diffusion sample paths to any specified tolerance. We demonstrate the efficacy of our approach by showing that with finite computation it is possible to determine whether or not sample paths cross various irregular barriers, simulate to any specified tolerance the first hitting time of the irregular barrier and simulate killed diffusion sample paths.
引用
收藏
页码:794 / 856
页数:63
相关论文
共 50 条
  • [31] Applied Stochastic Control of Jump Diffusions
    Lleo, Sebastien
    QUANTITATIVE FINANCE, 2020, 20 (08) : 1237 - 1238
  • [32] Spectral analysis of diffusions with jump boundary
    Kolb, Martin
    Wuebker, Achim
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (07) : 1992 - 2012
  • [33] Stochastic Flows and Jump-Diffusions
    Siu, Tak Kuen
    QUANTITATIVE FINANCE, 2020, 20 (06) : 895 - 897
  • [34] Stability of Jump Diffusions with Random Switching
    Yin, G.
    Xi, Fubao
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 5979 - 5984
  • [35] Estimating functions for jump-diffusions
    Jakobsen, Nina Munkholt
    Sorensen, Michael
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) : 3282 - 3318
  • [36] Nonlinear filtering for jump-diffusions
    Poklukar, Darja Rupnik
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 197 (02) : 558 - 567
  • [37] A fast exact simulation method for a class of Markov jump processes
    Li, Yao
    Hu, Lili
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (18):
  • [38] Pricing American options for jump diffusions by iterating optimal stopping problems for diffusions
    Bayraktar, Erhan
    Xing, Hao
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2009, 70 (03) : 505 - 525
  • [39] STRONG MIXING AND ENERGY FOR DIFFUSIONS
    BAXTER, JR
    BROSAMLER, GA
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (11): : 733 - 736
  • [40] Pricing American options for jump diffusions by iterating optimal stopping problems for diffusions
    Erhan Bayraktar
    Hao Xing
    Mathematical Methods of Operations Research, 2009, 70 : 505 - 525