Electrochemical nucleation and growth of Cu onto Au nanoparticles supported on a Si (111) wafer electrode

被引:19
|
作者
Romero-Romo, M. [1 ]
Aldana-Gonzalez, J. [1 ]
Botello, L. E. [1 ]
Montes de Oca, M. G. [1 ]
Ramirez-Silva, M. T. [2 ]
Corona-Avendano, S. [1 ]
Palomar-Pardave, M. [1 ]
机构
[1] Univ Autonoma Metropolitana Azcapotzalco, Dept Mat, Area Ingn Mat, Av San Pablo 180, Mexico City 02200, DF, Mexico
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Quim, Area Quim Analit, Av San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
关键词
Gold nanoparticles; Si (111) wafer electrode; Cu upd-opd; Nucleation; Kinetics; UNDERPOTENTIAL DEPOSITION; GOLD NANOPARTICLES; OVERPOTENTIAL DEPOSITION; 2-DIMENSIONAL NUCLEATION; N-SI(111)-H ELECTRODES; METAL-DEPOSITION; ITO ELECTRODE; AU(111); COPPER; SURFACES;
D O I
10.1016/j.jelechem.2017.03.003
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This work showed that chemically-synthesized gold nanoparticles, AuNPs, supported onto a Si (111) wafer electrode, can be selectively modified with a copper adlayer through underpotential deposition (upd) conditions, using both: potentiodynamic or potentiostatic electrochemical means. From analysis of experimental potentiostatic current density transients, it is shown that Cu upd onto the AuNPs occurs by a mechanism involving the simultaneous presence of a Langmuir-type adsorption-desorption and an instantaneous two-dimensional, 2D, nucleation process. The influence of the applied potential on the Cu upd kinetics and on the extent of Cu atoms coverage over the AuNPs was also reported. Furthermore, it is shown that the Cu overpotential deposition, opd, onto these AuNPs, starting from a potential in the upd region where the AuNPs surface is free from Cu atoms, occurs through a 2D-3D mechanism, where the 3D nucleation is mass-transfer controlled. Notwithstanding, when Cu opd started at the equilibrium potential the mechanism solely involved 3D nucleation. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [41] Nucleation and growth of Si on Pb monolayer covered Si(111) surfaces
    Chang, Tien-Chih
    Chatterjee, Kuntal
    Chang, Shih-Hsin
    Lee, Yi-Hsien
    Hwang, Ing-Shouh
    SURFACE SCIENCE, 2011, 605 (13-14) : 1249 - 1256
  • [42] NUCLEATION AND GROWTH OF FE ON CU(111) IN THE MONOLAYER RANGE
    BRODDE, A
    NEDDERMEYER, H
    ULTRAMICROSCOPY, 1992, 42 : 556 - 561
  • [43] Au nanocluster growth on Graphene supported on Ni(111)
    Yarmoff, Jory A.
    Salvo, Christopher
    SURFACE SCIENCE, 2019, 681 : 59 - 63
  • [44] Nucleation and growth model for {110}- and {111}-truncated nanoparticles
    Nicholas J. Jones
    Raja Swaminathan
    Michael E. McHenry
    David E. Laughlin
    Journal of Materials Research, 2015, 30 : 3011 - 3019
  • [45] Nucleation and growth model for {110}- and {111}-truncated nanoparticles
    Jones, Nicholas J.
    Swaminathan, Raja
    McHenry, Michael E.
    Laughlin, David E.
    JOURNAL OF MATERIALS RESEARCH, 2015, 30 (20) : 3011 - 3019
  • [46] Nucleation and growth of selenium electrodeposition onto tin oxide electrode
    Lai, Yanqing
    Liu, Fangyang
    Li, Jie
    Zhang, Zhian
    Liu, Yexiang
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2010, 639 (1-2) : 187 - 192
  • [47] The reactions of cyclohexene on Au(111)-supported molybdenum carbide nanoparticles
    Potapenko, DV
    Horn, JM
    White, MG
    JOURNAL OF CATALYSIS, 2005, 236 (02) : 346 - 355
  • [48] Spontaneous Growth of Au Nanoparticles onto CdS, ZnS or PbS Thin Films for Electrochemical Immunosensors
    Pan, Hongcheng
    Huang, Shan
    Li, Xuepeng
    Li, Ping
    Zhu, Wenyuan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (05): : 3364 - 3375
  • [49] Nonequilibrium fluctuation theory in electrochemical nucleation .3. Experimental determination of fluctuation growth rate in silver nucleation onto platinum electrode
    Tadano, A
    Aogaki, R
    JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (14): : 6146 - 6151
  • [50] Direct observations of nucleation and early-stage growth of Au-catalyzed GaAs nanowires on Si(111)
    Andersen, Christopher R. Y.
    Lehmann, Sebastian
    Tornberg, Marcus
    Maliakkal, Carina B.
    Jacobsson, Daniel
    Molhave, Kristian S.
    Dick, Kimberly A.
    NANOTECHNOLOGY, 2025, 36 (13)