Weakly nonlinear oscillations of nearly inviscid axisymmetric liquid bridges

被引:36
|
作者
Nicolas, JA
Vega, JM
机构
[1] ETSI Aeronáuticos, Univ. Politécnica de Madrid
关键词
D O I
10.1017/S002211209600866X
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A weakly nonlinear analysis is presented of the small oscillations of nearly inviscid liquid bridges subjected to almost resonant axial vibrations of the disks. An amplitude equation is derived for the evolution of the complex amplitude of the oscillations that exhibits hysteresis and period doublings. We also analyse the steady streaming in the bulk forced by the oscillatory boundary layers near the disks; the boundary layer near the free surface produces no forcing terms. In particular some experimentally observed patterns are explained, and some new, non-observed ones are predicted. We conclude that the structure of this steady flow is not the appropriate one to counterbalance steady thermocapillary convection, but our results indicate how to get the desired counterbalancing effect.
引用
收藏
页码:95 / 128
页数:34
相关论文
共 50 条
  • [21] On the steady streaming flow due to high-frequency vibration in nearly inviscid liquid bridges
    Nicolas, JA
    Rivas, D
    Vega, JM
    JOURNAL OF FLUID MECHANICS, 1998, 354 : 147 - 174
  • [22] The interaction of thermocapillary convection and low-frequency vibration in nearly-inviscid liquid bridges
    Nicolas, JA
    Rivas, D
    Vega, JM
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (03): : 389 - 423
  • [23] NONLINEAR OSCILLATIONS OF INVISCID FREE DROPS
    PATZEK, TW
    BENNER, RE
    BASARAN, OA
    SCRIVEN, LE
    JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 97 (02) : 489 - 515
  • [24] Stability of axisymmetric liquid bridges
    Leonid G. Fel
    Boris Y. Rubinstein
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 3447 - 3471
  • [25] Freezing of axisymmetric liquid bridges
    Huang, Weiqi
    Zhou, Xinping
    PHYSICAL REVIEW FLUIDS, 2020, 5 (10)
  • [26] Stability of axisymmetric liquid bridges
    Fel, Leonid G.
    Rubinstein, Boris Y.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3447 - 3471
  • [27] Solution breakdown in a family of self-similar nearly inviscid axisymmetric vortices
    Fernandez-Feria, R.
    Fernandez de la Mora, J.
    Barrero, A.
    Journal of Fluid Mechanics, 1995, 305 : 77 - 91
  • [28] Solution breakdown in a family of self-similar nearly inviscid axisymmetric vortices
    FernandezFeria, R
    delaMora, JF
    Barrero, A
    JOURNAL OF FLUID MECHANICS, 1995, 305 : 77 - 91
  • [29] THE BREAKING OF AXISYMMETRIC SLENDER LIQUID BRIDGES
    MESEGUER, J
    JOURNAL OF FLUID MECHANICS, 1983, 130 (MAY) : 123 - 151
  • [30] Vertical excitation of axisymmetric liquid bridges
    Valsamis, J. -B.
    Mastrangeli, M.
    Lambert, P.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2013, 38 : 47 - 57