Centrifuge model tests and effective stress analyses of offshore wind turbine systems with a suction bucket foundation subject to seismic load

被引:21
|
作者
Ueda, K. [1 ]
Uzuoka, R. [1 ]
Iai, S. [2 ]
Okamura, T. [3 ]
机构
[1] Kyoto Univ, Disaster Prevent Res Inst, Uji, Kyoto 6110011, Japan
[2] FLIP Consortium, Nakagyo Ku, Jiji Press Bld,5th Floor,Nakahori Cho 185, Kyoto 6040844, Japan
[3] Hitachi Zosen Co, Suminoe Ku, 7-89,Nanko Kita 1, Osaka 5598559, Japan
关键词
Centrifuge test; Cyclic loading; Effective stress analysis; Partially drained condition; Strain space multiple mechanism model; Suction bucket foundation; CAISSON FOUNDATIONS; GRANULAR-MATERIALS; CYCLIC RESPONSE; STRAIN; SAND;
D O I
10.1016/j.sandf.2020.08.007
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The seismic behavior of a suction bucket foundation for offshore wind turbine systems is studied using centrifuge model tests with a scaling factor of 1/100 and an effective stress analysis based on the strain space multiple mechanism model implemented in the FLIP computer code (Finite element analysis program of Liquefaction Process). The primary dimensional parameters of the prototype scale suction bucket foundations selected for this study are as follows: skirt length L = 8 m, diameter D = 19 m, L = 9 m and D = 12 m. Placed on firmly compacted saturated sand, suction bucket foundations supporting an idealized wind turbine tower 100 m in height are subject to a recorded earthquake motion with a peak acceleration of 0.25g. Results of the model tests and the analyses indicate that the constitutive model used in this study is capable of capturing the essential features of the seismic behavior of offshore wind turbine systems supported by suction bucket foundation. In particular, this model is capable of evaluating the confining effect of a suction bucket on the increase in excess pore water pressure inside the bucket in response to the vertical confining pressure applied from the tower and shaft structure of the wind turbine system. This model is also capable of evaluating the inertia effects of the tower and shaft structure above the foundation affecting the driving mudline moment and shear, which leads to the deformation of the suction bucket in terms of rotation. The residual inclination of the tower is less than 0.001 rad, which satisfies the design criteria, and has a rotation angle of 0.005 rad. The strain space multiple mechanism model is applied to a general combination of static and cyclic loads in storm conditions. The computed results are consistent with those of a proposed cyclic load response diagram based on 1 g model tests at partially drained conditions in an earlier study by Nielsen et al. (2017), suggesting the applicability of this model to general load conditions is reasonable. (C) 2020 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society.
引用
收藏
页码:1546 / 1569
页数:24
相关论文
共 32 条
  • [1] Seismic centrifuge modelling of suction bucket foundation for offshore wind turbine
    Wang, Xuefei
    Yang, Xu
    Zeng, Xiangwu
    RENEWABLE ENERGY, 2017, 114 : 1013 - 1022
  • [2] Shaking table tests of offshore wind turbine systems with a suction bucket foundation in sandy seabed subject to earthquake and wind loads
    Gao, Bin
    Li, Chong
    Zhou, Feilong
    Zhu, Wenxuan
    Ye, Guanlin
    Marine Structures, 2025, 99
  • [3] Lateral response of improved suction bucket foundation for offshore wind turbine in centrifuge modelling
    Wang, Xuefei
    Yang, Xu
    Zeng, Xiangwu
    OCEAN ENGINEERING, 2017, 141 : 295 - 307
  • [4] Seismic response of tripod suction bucket foundation for offshore wind turbine in sands
    Cheng, Xinglei
    Li, Yang
    Mu, Kun
    El Naggar, M. Hesham
    Zhou, Yadong
    Wang, Piguang
    Sun, Xiaohan
    Liu, Ju
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2024, 177
  • [5] Seismic responses analysis of suction bucket foundation for offshore wind turbine in clays
    Zhang, Jianxin
    Cheng, Wenlong
    Cheng, Xinglei
    Wang, Piguang
    Wang, Tianju
    OCEAN ENGINEERING, 2021, 232
  • [6] Centrifuge modeling of lateral bearing behavior of offshore wind turbine with suction bucket foundation in sand
    Wang, Xuefei
    Yang, Xu
    Zeng, Xiangwu
    OCEAN ENGINEERING, 2017, 139 : 140 - 151
  • [7] Response of offshore wind turbine tripod suction bucket foundation to seismic and environmental loading
    Cheng, Xinglei
    Cheng, Wenlong
    Wang, Piguang
    Naggar, M. Hesham El
    Zhang, Jianxin
    Liu, Zhongxian
    OCEAN ENGINEERING, 2022, 257
  • [8] Centrifugal model tests on bucket foundation in clay for offshore wind turbine
    State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing
    100084, China
    不详
    100038, China
    不详
    100038, China
    Yantu Gongcheng Xuebao, (41-45):
  • [9] Studies on cyclic behavior of tripod suction bucket foundation system supporting offshore wind turbine using centrifuge model test
    Jeong, Yeong-Hoon
    Ko, Kil-Wan
    Kim, Dong-Soo
    Kim, Jae-Hyun
    WIND ENERGY, 2021, 24 (05) : 515 - 529
  • [10] Scour Risk Assessment of Offshore Wind Turbine with Suction Bucket Foundation
    Kim, Dong-Hyawn
    Kim, Young-Jin
    JOURNAL OF COASTAL RESEARCH, 2020, : 237 - 241