Prevention of ribosome collision-induced neuromuscular degeneration by SARS CoV-2-encoded Nsp1

被引:10
|
作者
Wang, Xingjun [1 ]
Rimal, Suman [1 ]
Tantray, Ishaq [1 ]
Geng, Ji [1 ]
Bhurtel, Sunil [1 ]
Khaket, Tejinder Pal [1 ]
Li, Wen [1 ]
Han, Zhe [2 ]
Lu, Bingwei [1 ,3 ,4 ]
机构
[1] Stanford Univ, Sch Med, Dept Pathol, Stanford, CA 94350 USA
[2] Univ Maryland, Sch Med, Dept Med, Ctr Precis Dis Modeling, Baltimore, MD 21201 USA
[3] Stanford Univ, Sch Med, Program Neurosci, Stanford, CA 94350 USA
[4] Stanford Univ, Sch Med, Program Canc Biol, Stanford, CA 94350 USA
关键词
SARS-CoV-2; Nsp1; ribosome-associated quality control; ribosome collision; Alzheimer's disease; HOST PROTEIN-SYNTHESIS; MESSENGER-RNA TRANSLATION; QUALITY-CONTROL; COLLIDED RIBOSOMES; A-BETA; CORONAVIRUS; DROSOPHILA; APP; INITIATION; SARS-COV-2;
D O I
10.1073/pnas.2202322119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An overarching goal of aging and age-related neurodegenerative disease research is to discover effective therapeutic strategies applicable to a broad spectrum of neurodegenerative diseases. Little is known about the extent to which targetable pathogenic mechanisms are shared among these seemingly diverse diseases. Translational control is critical for maintaining proteostasis during aging. Gaining control of the translation machinery is also crucial in the battle between viruses and their hosts. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing COVID-19 pandemic. Here, we show that overexpression of SARS-CoV-2-encoded nonstructural protein 1 (Nsp1) robustly rescued neuromuscular degeneration and behavioral phenotypes in Drosophila models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. These diseases share a common mechanism: the accumulation of aberrant protein species due to the stalling and collision of translating ribosomes, leading to proteostasis failure. Our genetic and biochemical analyses revealed that Nsp1 acted in a multipronged manner to resolve collided ribosomes, abort stalled translation, and remove faulty translation products causative of disease in these models, at least in part through the ribosome recycling factor ABCE1, ribosome-associated quality-control factors, autophagy, and AKT signaling. Nsp1 exhibited exquisite specificity in its action, as it did not modify other neurodegenerative conditions not known to be associated with ribosome stalling. These findings uncover a previously unrecognized mechanism of Nsp1 in manipulating host translation, which can be leveraged for combating agerelated neurodegenerative diseases that are affecting millions of people worldwide and currently without effective treatment.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] SARS-CoV2 Nsp1 is a metal-dependent DNA and RNA endonuclease
    Salgueiro, Bruno A.
    Saramago, Margarida
    Tully, Mark D.
    Issoglio, Federico
    Silva, Sara T. N.
    Paiva, Ana C. F.
    Arraiano, Cecilia M.
    Matias, Pedro M.
    Matos, Rute G.
    Moe, Elin
    Romao, Celia V.
    BIOMETALS, 2024, 37 (05) : 1127 - 1146
  • [22] Structure-function mapping and mechanistic insights on the SARS CoV2 Nsp1
    Salgueiro, Bruno A.
    Saramago, Margarida
    Tully, Mark D.
    Arraiano, Cecilia M.
    Moe, Elin
    Matos, Rute G.
    Matias, Pedro M.
    Romao, Celia V.
    PROTEIN SCIENCE, 2024, 33 (12)
  • [23] The key features of SARS-CoV-2 leader and NSP1 required for viral escape of NSP1-mediated repression
    Bujanic, Lucija
    Shevchuk, Olga
    von Kuegelgen, Nicolai
    Kalinina, Anna
    Ludwik, Katarzyna
    Koppstein, David
    Zerna, Nadja
    Sickmann, Albert
    Chekulaeva, Marina
    RNA, 2022, 28 (05) : 766 - 779
  • [24] Mechanisms of SARS-CoV-2 Nsp1 mediated host mRNA nuclear export inhibition
    Mei, Menghan
    Ke, Zhang
    Lisa, Miorin
    Adolfo, Garcia-Sastre
    Beatriz, Fontoura
    Yi, Ren
    PROTEIN SCIENCE, 2023, 32 (12)
  • [25] Artesunate induces substantial topological alterations in the SARS-CoV-2 Nsp1 protein structure
    Gurung, Arun Bahadur
    Ali, Mohammad Ajmal
    Lee, Joongku
    Abul Farah, Mohammad
    Al-Anazi, Khalid Mashay
    Al-Hemaid, Fahad
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2022, 34 (02)
  • [26] Lysine 164 is critical for SARS-CoV-2 Nsp1 inhibition of host gene expression
    Shen, Zhou
    Zhang, Guangxu
    Yang, Yilin
    Li, Mengxia
    Yang, Siqi
    Peng, Guiqing
    JOURNAL OF GENERAL VIROLOGY, 2021, 102 (01):
  • [27] The SARS-CoV-2 proteins NSP1 and NSP13 inhibit interferon activation through distinct mechanisms
    Vazquez, Christine
    Swanson, Sydnie
    Negatu, Seble
    Dittmar, Mark
    Ramage, Holly
    Cherry, Sara
    Jurado, Kellie
    JOURNAL OF IMMUNOLOGY, 2021, 206
  • [28] Nsp1 facilitates SARS-CoV-2 replication through calcineurin-NFAT signaling
    Lui, Wai-Yin
    Ong, Chon Phin
    Cheung, Pak-Hin Hinson
    Ye, Zi-Wei
    Chan, Chi-Ping
    To, Kelvin Kai-Wang
    Yuen, Kit-San
    Jin, Dong-Yan
    MBIO, 2024, 15 (04):
  • [29] Order and disorder bound together in SARS-CoV-2 Nsp1 suppress host translation
    Libich, David S.
    Baudin, Antoine
    STRUCTURE, 2023, 31 (02) : 121 - 122
  • [30] Copper(II) coordination to the intrinsically disordered region of SARS- CoV-2 Nsp1
    Morales, Maryann
    Yang, Moon Young
    Goddard, William A., III
    Gray, Harry B.
    Winkler, Jay R.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (20)