Medians are Below Joins in Semimodular Lattices of Breadth 2

被引:2
|
作者
Czedli, Gabor [1 ]
Powers, Robert C. [2 ]
White, Jeremy M. [3 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
[2] Univ Louisville, Dept Math, Louisville, KY 40292 USA
[3] Spalding Univ, Sch Nat Sci, Louisville, KY 40203 USA
关键词
Semimodular lattice; Breadth; c(1)-median property; Covering path; Join-prime element; MAJORITIES;
D O I
10.1007/s11083-020-09544-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a lattice of finite length and let d denote the minimum path length metric on the covering graph of L. For any xi = (x(1), ... , x(k)) is an element of L-k, an element y belonging to L is called a median of xi if the sum d(y, x(1)) + center dot center dot center dot + d(y, x(k)) is minimal. The lattice L satisfies the c(1)-median property if, for any xi = (x(1), ... , x(k)) is an element of L-k and for any median y of xi, y <= x(1) boolean OR center dot center dot center dot boolean OR x(k). Our main theorem asserts that if L is an upper semimodular lattice of finite length and the breadth of L is less than or equal to 2, then L satisfies the c(1)-median property. Also, we give a construction that yields semimodular lattices, and we use a particular case of this construction to prove that our theorem is sharp in the sense that 2 cannot be replaced by 3.
引用
收藏
页码:351 / 363
页数:13
相关论文
共 50 条
  • [11] A CONSTRUCTION OF SEMIMODULAR LATTICES
    GRATZER, G
    KISS, EW
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1986, 2 (04): : 351 - 365
  • [12] STRONGNESS IN SEMIMODULAR LATTICES
    STERN, M
    DISCRETE MATHEMATICS, 1990, 82 (01) : 79 - 88
  • [13] Semimodular Lattices and Semibuildings
    David Samuel Herscovici
    Journal of Algebraic Combinatorics, 1998, 7 : 39 - 51
  • [14] SEMIHOMOMORHIISMS OF SEMIMODULAR LATTICES
    PFALTZ, JL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 22 (02) : 418 - &
  • [15] Notes on Planar Semimodular Lattices. VII. Resections of Planar Semimodular Lattices
    Gábor Czédli
    George Grätzer
    Order, 2013, 30 : 847 - 858
  • [16] Notes on planar semimodular lattices. V. Cover-preserving embeddings of finite semimodular lattices into simple semimodular lattices
    Gratzer, G.
    Wares, T.
    ACTA SCIENTIARUM MATHEMATICARUM, 2010, 76 (1-2): : 27 - 33
  • [17] Notes on planar semimodular lattices. V. Cover-preserving embeddings of finite semimodular lattices into simple semimodular lattices
    G. Grätzer
    T. Wares
    Acta Scientiarum Mathematicarum, 2010, 76 (1-2): : 27 - 33
  • [18] Congruence lattices of finite semimodular lattices
    Gratzer, G
    Lakser, H
    Schmidt, ET
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (03): : 290 - 297
  • [19] Notes on planar semimodular lattices. V. Cover-preserving embeddings of finite semimodular lattices into simple semimodular lattices
    G. Grätzer
    T. Wares
    Acta Scientiarum Mathematicarum, 2012, 78 (1-2): : 27 - 33
  • [20] ON THE NUMBER OF SLIM, SEMIMODULAR LATTICES
    Czedli, Gabor
    Dekany, Tamas
    Ozsvart, Laszlo
    Szakacs, Nora
    Udvari, Balazs
    MATHEMATICA SLOVACA, 2016, 66 (01) : 5 - 18