The total-rainbow k-connection of 2-connected graphs

被引:0
|
作者
Liu, Sujuan [1 ]
Liu, Yinli [1 ]
Xing, Huaming [1 ]
An, Mingqiang [1 ]
Li, Jing [2 ]
机构
[1] Tianjin Univ Sci & Technol, Sch Sci, Tianjin 300457, Peoples R China
[2] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
total-rainbow coloring; total-rainbow k-connected; 2-connected graph; NUMBER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is said to be total-colored if all the edges and the vertices of the graph are colored. Let k be a positive integer. A path P in a total-colored graph G is called a total-rainbow path if its edges and internal vertices have distinct colors. The total-colored graph G is total-rainbow k-connected if any two vertices of G are connected by k disjoint total-rainbow paths. The total-rainbow k-connection number of G, denoted by trc(k)(G), is the minimum number of colors needed to make G total-rainbow k-connected. In this paper, we give tight upper bounds for the total-rainbow k-connection number trc(k)(G) of a 2-connected graph G. Moreover, trc(2)(G) = 2n (n >= 5) if and only if G is a cycle of order n.
引用
收藏
页码:237 / 246
页数:10
相关论文
共 50 条
  • [1] Total rainbow k-connection in graphs
    Liu, Henry
    Mestre, Angela
    Sousa, Teresa
    DISCRETE APPLIED MATHEMATICS, 2014, 174 : 92 - 101
  • [2] Hardness result for the total rainbow k-connection of graphs
    Li, Wenjing
    Li, Xueliang
    Wu, Di
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 305 : 27 - 31
  • [3] The rainbow connection number of 2-connected graphs
    Ekstein, Jan
    Holub, Premysl
    Kaiser, Tomas
    Koch, Maria
    Camacho, Stephan Matos
    Ryjacek, Zdenek
    Schiermeyer, Ingo
    DISCRETE MATHEMATICS, 2013, 313 (19) : 1884 - 1892
  • [4] Rainbow vertex k-connection in graphs
    Liu, Henry
    Mestre, Angela
    Sousa, Teresa
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) : 2549 - 2555
  • [5] Some upper bounds for the total-rainbow connection number of graphs
    Liu, Sujuan
    Zhao, Yan
    Wang, Linlin
    ARS COMBINATORIA, 2020, 150 : 159 - 169
  • [6] Monochromatic k-connection of graphs
    Cai, Qingqiong
    Fujita, Shinya
    Liu, Henry
    Park, Boram
    DISCRETE APPLIED MATHEMATICS, 2025, 360 : 328 - 341
  • [7] Total-rainbow connection and forbidden subgraphs
    Zhang, Jingshu
    Jiang, Hui
    Li, Wenjing
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 364 - 370
  • [8] Tight upper bound of the rainbow vertex-connection number for 2-connected graphs
    Li, Xueliang
    Liu, Sujuan
    DISCRETE APPLIED MATHEMATICS, 2014, 173 : 62 - 69
  • [9] On Rainbow k-Connection Number of Special Graphs and It's Sharp Lower Bound
    Agustin, Ika Hesti
    Dafik
    Gembong, A. W.
    Alfarisi, Ridho
    INTERNATIONAL CONFERENCE ON MATHEMATICS: EDUCATION, THEORY AND APPLICATION, 2017, 855
  • [10] On total rainbow k-connected graphs
    Sun, Yuefang
    Jin, Zemin
    Li, Fengwei
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 223 - 227