Homoclinic solutions for ordinary p-Laplacian systems with a coercive potential

被引:63
|
作者
Tang, X. H. [1 ]
Xiao, Li [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
关键词
Homoclinic solutions; p-Laplacian systems; Coercive potential; PERIODIC-SOLUTIONS; 2ND-ORDER SYSTEMS; ORBITS; EXISTENCE;
D O I
10.1016/j.na.2008.11.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A result for the existence of homoclinic orbits is obtained for p-Laplacian systems d/dt (vertical bar(u) over dot(t)vertical bar(p-2)(u) over dot(t)) = del F(t, u(t)) + f(t), where p > 1, u is an element of R-n, F is an element of C-1(R x R-n, R) is T-periodic with respect to t and f : R -> R-n is a continuous and bounded function such that F(t, x ) >= F(t, 0) + b vertical bar x vertical bar(mu) and integral(R) vertical bar f(t)vertical bar(mu/(mu-1)) dt < infinity for some b > 0 and mu > 1. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1124 / 1132
页数:9
相关论文
共 50 条
  • [21] Existence and multiplicity of periodic solutions for the ordinary p-Laplacian systems
    Liao K.
    Tang C.-L.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 395 - 406
  • [22] Nonconstant periodic solutions for a class of ordinary p-Laplacian systems
    Chun Li
    Ravi P Agarwal
    Yang Pu
    Chun-Lei Tang
    Boundary Value Problems, 2016
  • [23] Homoclinic Solutions for p(t)-Laplacian-Hamiltonian Systems Without Coercive Conditions
    Zhang, Ziheng
    Xiang, Tian
    Yuan, Rong
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1589 - 1611
  • [24] Multiple homoclinic solutions for p-Laplacian Hamiltonian systems with concave–convex nonlinearities
    Lili Wan
    Boundary Value Problems, 2020
  • [25] PERIODIC SOLUTIONS FOR AN ORDINARY P-LAPLACIAN SYSTEM
    Zhang, Xingyong
    Tang, Xianhua
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1369 - 1396
  • [26] EXISTENCE OF HOMOCLINIC SOLUTIONS FOR THE SECOND-ORDER DISCRETE P-LAPLACIAN SYSTEMS
    Chen, Peng
    Tang, X. H.
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (05): : 2123 - 2143
  • [27] Some existence results on periodic solutions of ordinary p-Laplacian systems
    Xu, Bo
    Tang, Chun-Lei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (02) : 1228 - 1236
  • [28] Existence of infinitely many periodic solutions for ordinary p-Laplacian systems
    Ma, Shiwang
    Zhang, Yuxiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 469 - 479
  • [29] Periodic solutions of non-autonomous ordinary p-Laplacian systems
    Lv X.
    Lu S.
    Yan P.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 11 - 18
  • [30] Periodic solutions of non-autonomous ordinary p-Laplacian systems
    Lv, Xiang
    Lu, Shiping
    Yan, Ping
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2011, 35 (1-2) : 11 - 18