Low-cycle fatigue behavior and life prediction of fine-grained 316LN austenitic stainless steel

被引:15
|
作者
Zhang, Zhe [1 ]
Li, An [1 ]
Wang, Yanping [2 ]
Lin, Qiang [1 ]
Chen, Xu [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300350, Peoples R China
[2] Inner Mongolia Polytech Univ, Sch Chem Engn, Hohhot 010051, Peoples R China
基金
中国国家自然科学基金;
关键词
fatigue; grain size; lifecycle; nuclear materials; scanning electron microscopy (SEM); HARMONIC STRUCTURE; MECHANICAL-PROPERTIES; STRAIN-RATE; MARTENSITIC-TRANSFORMATION; MICROSTRUCTURAL EVOLUTION; DEFORMATION-BEHAVIOR; TENSILE PROPERTIES; MEAN STRESS; AISI; 316L; SIZE;
D O I
10.1557/jmr.2020.322
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Grain refinement has been applied to enhance the materials strength for miniaturization and lightweight design of nuclear equipment. It is critically important to investigate the low-cycle fatigue (LCF) properties of grain refined 316LN austenitic stainless steels for structural design and safety assessment. In the present work, a series of fine-grained (FG) 316LN steels were produced by thermo-mechanical processes. The LCF properties were studied under a fully reversed strain-controlled mode at room temperature. Results show that FG 316LN steels demonstrate good balance of high strength and high ductility. However, a slight loss of ductility in FG 316LN steel induces a significant deterioration of LCF life. The rapid energy dissipation in FG 316LN steels leads to the reduction of their LCF life. Dislocations develop rapidly in the first stage of cycles, which induces the initial cyclic hardening. The dislocations rearrange to form dislocations cell structure resulting in cyclic softening in the subsequent cyclic deformation. Strain-induced martensite transformation appears in FG 316LN stainless steels at high strain amplitude (Delta epsilon/2 = 0.8%), which leads to the secondary cyclic hardening. Moreover, a modified LCF life prediction model for grain refined metals predicts the LCF life of FG 316LN steels well.
引用
收藏
页码:3180 / 3191
页数:12
相关论文
共 50 条
  • [41] Damage structure in austenitic stainless steel 316LN irradiated at low temperature in the HFIR
    Hashimoto, N
    Wakai, E
    Robertson, JP
    JOURNAL OF ELECTRON MICROSCOPY, 1999, 48 (05): : 575 - 580
  • [42] Microcrack initiation in low-cycle fatigue of an austenitic stainless steel
    Mu, P.
    Aubin, V.
    FATIGUE 2010, 2010, 2 (01): : 1951 - 1960
  • [43] Thermomechanical and isothermal fatigue crack propagation testing method for 316LN austenitic stainless steel
    Zheng, Yiming
    Li, Bingbing
    Zhao, Jingwei
    Liu, Caiming
    Itoh, Takamoto
    Chen, Xu
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2022, 45 (10) : 3040 - 3052
  • [44] Damage structure in austenitic stainless steel 316LN irradiated at low temperature in the HFIR
    Hashimoto, N.
    Wakai, E.
    Robertson, J.P.
    Microscopy, 1999, 48 (05): : 575 - 580
  • [45] Strain controlled fatigue deformation and fracture of nitrogen alloyed 316LN austenitic stainless steel
    Reddy, G. V. Prasad
    Sandhya, R.
    Valsan, M.
    Rao, K. Bhanu Sankara
    Sankaran, S.
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2010, 63 (2-3): : 505 - 510
  • [46] Strain controlled fatigue deformation and fracture of nitrogen alloyed 316LN austenitic stainless steel
    G. V. Prasad Reddy
    R. Sandhya
    M. Valsan
    K. Bhanu Sankara Rao
    S. Sankaran
    Transactions of the Indian Institute of Metals, 2010, 63 : 505 - 510
  • [47] A COMPARATIVE-EVALUATION OF LOW-CYCLE FATIGUE BEHAVIOR OF TYPE 316LN BASE-METAL, 316-WELD METAL, AND 316LN/316-WELD JOINT
    VALSAN, M
    SUNDARARAMAN, D
    RAO, KBS
    MANNAN, SL
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1995, 26 (05): : 1207 - 1219
  • [48] Hot Deformation Behavior of 316LN Stainless Steel
    He, Wenwu
    Liu, Jiansheng
    Chen, Huiqin
    Guo, Huiguang
    MANUFACTURING ENGINEERING AND AUTOMATION I, PTS 1-3, 2011, 139-141 : 516 - 519
  • [49] Impression Creep Behavior of 316LN Stainless Steel
    Mathew, M. D.
    Naveena
    Vijayanand, D.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2013, 22 (02) : 492 - 497
  • [50] Impression Creep Behavior of 316LN Stainless Steel
    M. D. Mathew
    D. Naveena
    Journal of Materials Engineering and Performance, 2013, 22 : 492 - 497