Biregular Cages of Odd Girth

被引:2
|
作者
Exoo, Geoffrey [1 ]
Jajcay, Robert [2 ]
机构
[1] Indiana State Univ, Dept Math & Comp Sci, Terre Haute, IN 47809 USA
[2] Comenius Univ, Katedra Algebry Geometrie & Didaktiky Matemat, Bratislava 84248, Slovakia
关键词
cage; biregular cage; recursive construction; girth; CONSTRUCTIONS;
D O I
10.1002/jgt.21860
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Biregular ({r, m}; g)-cages are graphs of girth g that contain vertices of degrees r and m and are of the smallest order among all such graphs. We show that for every r >= 3 and every odd g = 2t + 1 >= 3, there exists an integer m(0) such that for every even m >= m(0), the biregular ({r, m}, g)-cage is of order equal to a natural lower bound analogous to the well-known Moore bound. In addition, when r is odd, the restriction on the parity of m can be removed, and there exists an integer m(0) such that a biregular ({r, m}, g)-cage of order equal to this lower bound exists for all m >= m(0). This is in stark contrast to the result classifying all cages of degree k and girth g whose order is equal to the Moore bound. (C) 2015 Wiley Periodicals, Inc. J. Graph Theory 81: 50-56, 2016
引用
收藏
页码:50 / 56
页数:7
相关论文
共 50 条
  • [21] On Superconnectivity of (4,g)-Cages with Even Girth
    Lin, Yuqing
    Lu, Hongliang
    Wu, Yunjian
    Yu, Qinglin
    NETWORKS, 2010, 56 (02) : 143 - 148
  • [22] On a relation between bipartite biregular cages, block designs and generalized polygons
    Araujo-Pardo, Gabriela
    Jajcay, Robert
    Ramos-Rivera, Alejandra
    Szonyi, Tamas
    JOURNAL OF COMBINATORIAL DESIGNS, 2022, 30 (07) : 479 - 496
  • [23] On the connectivity of (k, g)-cages of even girth
    Lin, Yuqing
    Balbuena, Camino
    Marcote, Xavier
    Miller, Mirka
    DISCRETE MATHEMATICS, 2008, 308 (15) : 3249 - 3256
  • [24] Distances in graphs of girth 6 and generalised cages
    Alochukwu, Alex
    Dankelmann, Peter
    Discrete Applied Mathematics, 2021, 294 : 125 - 137
  • [25] Distances in graphs of girth 6 and generalised cages
    Alochukwu, Alex
    Dankelmann, Peter
    DISCRETE APPLIED MATHEMATICS, 2021, 294 : 125 - 137
  • [26] On the connectivity of cages with girth five, six and eight
    Marcote, X.
    Balbuena, C.
    Pelayo, I.
    DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1441 - 1446
  • [27] On a conjecture on the order of cages with a given girth pair
    Balbuena, C.
    Salas, J.
    DISCRETE APPLIED MATHEMATICS, 2015, 190 : 24 - 33
  • [28] Rainbow connectivity of Moore cages of girth 6
    Balbuena, C.
    Fresan-Figueroa, J.
    Gonzalez-Moreno, D.
    Olsen, M.
    DISCRETE APPLIED MATHEMATICS, 2018, 250 : 104 - 109
  • [29] New results on bipartite biregular cages, block designs, and generalized polygonsNew results on bipartite biregular cages, block designs...G. Araujo-Pardo et al.
    Gabriela Araujo-Pardo
    György Kiss
    Tamás Szőnyi
    Boletín de la Sociedad Matemática Mexicana, 2025, 31 (1)
  • [30] On the chromatic number of graphs of odd girth without longer odd holes
    Wang, Hongyang
    DISCRETE APPLIED MATHEMATICS, 2024, 342 : 227 - 230