Laser-based powder bed fusion of 16MnCr5 and resulting material properties

被引:19
|
作者
Schmitt, Matthias [1 ]
Kamps, Tobias [1 ]
Siglmueller, Felix [2 ]
Winkler, Jakob [2 ]
Schlick, Georg [1 ]
Seidel, Christian [1 ,3 ]
Tobie, Thomas [2 ]
Stahl, Karsten [2 ]
Reinhart, Gunther [1 ,3 ]
机构
[1] Fraunhofer Inst Casting, Composite & Proc Technol IGCV, Augsburg, Germany
[2] Tech Univ Munich, Inst Machine Elements Gear Res Ctr FZG, Garching, Germany
[3] Tech Univ Munich, Inst Machine Tools & Ind Management Iwb, Garching, Germany
关键词
Laser-based powder bed fusion; Laser beam melting; Selectice laser melting; case hardening; carburization; hardness; tensile strenght; gear; tooth root fatigue; HEAT-TREATMENT; MICROSTRUCTURE; STRENGTH; GEARS;
D O I
10.1016/j.addma.2020.101372
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser-based Powder Bed Fusion (LPBF) has evolved to a manufacturing technology for prototype and small scale production of gears. The case hardening steel 16MnCr5 is typically used and its material properties are well known and understood. However, the resulting material properties following the post-LPBF process sequence such as residual stress annealing, case hardening and hard finishing are widely unknown. This paper presents a study of processing 16MnCr5 with an EOS M270 LPBF-machine reaching 99.5 % relative density and above. The resulting microstructure and hardness of the material is examined. Furthermore, the tensile strength as well as the gear-specific tooth root carrying capacity are studied. The results are compared to a conventionally processed material via continuous casting. It is shown that residual stress annealing widely compensates material anisotropy following the LPBF process. Material hardness in the as-built condition is increased up to 21 % compared to a conventional material. The case hardening behavior shows a difference in the resulting case hardening depth in comparison to conventional material. The residual stresses measured at the surface after the case hardening show compressive stresses. Pulsator tests deliver a stress-cycle (S-N) curve from which the tooth root carrying capacity can be derived.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Operando tomographic microscopy during laser-based powder bed fusion of alumina
    Malgorzata G. Makowska
    Fabrizio Verga
    Stefan Pfeiffer
    Federica Marone
    Cynthia S. T. Chang
    Kevin Florio
    Christian M. Schlepütz
    Konrad Wegener
    Thomas Graule
    Steven Van Petegem
    Communications Materials, 4
  • [32] Operando tomographic microscopy during laser-based powder bed fusion of alumina
    Makowska, Malgorzata G.
    Verga, Fabrizio
    Pfeiffer, Stefan
    Marone, Federica
    Chang, Cynthia S. T.
    Florio, Kevin
    Schleputz, Christian M.
    Wegener, Konrad
    Graule, Thomas
    Van Petegem, Steven
    COMMUNICATIONS MATERIALS, 2023, 4 (01)
  • [33] A method to evaluate the processability of metallic alloys by laser-based powder bed fusion
    Fonseca, Eduardo B.
    Gabriel, Andre H. G.
    Rocha, Thiago M.
    Valim, Diego B.
    Lopes, Eder S. N.
    MATERIALS TODAY COMMUNICATIONS, 2025, 44
  • [34] Activity model for homogenization of data sets in laser-based powder bed fusion
    Feng, Shaw C.
    Witherell, Paul
    Ameta, Gaurav
    Kim, Duck Bong
    RAPID PROTOTYPING JOURNAL, 2017, 23 (01) : 137 - 148
  • [35] A review of technological improvements in laser-based powder bed fusion of metal printers
    AmirMahyar Khorasani
    Ian Gibson
    Jithin Kozhuthala Veetil
    Amir Hossein Ghasemi
    The International Journal of Advanced Manufacturing Technology, 2020, 108 : 191 - 209
  • [36] Infrared Thermography for Laser-Based Powder Bed Fusion Additive Manufacturing Processes
    Moylan, Shawn
    Whitenton, Eric
    Lane, Brandon
    Slotwinski, John
    40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 10TH INTERNATIONAL CONFERENCE ON BARKHAUSEN NOISE AND MICROMAGNETIC TESTING, VOLS 33A & 33B, 2014, 1581 : 1191 - 1196
  • [37] A review of technological improvements in laser-based powder bed fusion of metal printers
    Khorasani, AmirMahyar
    Gibson, Ian
    Veetil, Jithin Kozhuthala
    Ghasemi, Amir Hossein
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 108 (1-2): : 191 - 209
  • [38] Processability of a Hot Work Tool Steel Powder Mixture in Laser-Based Powder Bed Fusion
    Hantke, Nick
    Grosswendt, Felix
    Strauch, Anna
    Fechte-Heinen, Rainer
    Roettger, Arne
    Theisen, Werner
    Weber, Sebastian
    Sehrt, Jan Torsten
    MATERIALS, 2022, 15 (07)
  • [39] Laser powder bed fusion recoater selection guide-Comparison of resulting powder bed properties and part quality
    Horn, Max
    Schmitt, Matthias
    Langer, Lukas
    Schlick, Georg
    Seidel, Christian
    POWDER TECHNOLOGY, 2024, 434
  • [40] Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion
    Wei, Chao
    Li, Lin
    VIRTUAL AND PHYSICAL PROTOTYPING, 2021, 16 (03) : 347 - 371