Interface electronic structures of BaTiO3@X nanoparticles (X=γ-Fe2O3, Fe3O4, α-Fe2O3, and Fe) investigated by XAS and XMCD

被引:68
|
作者
Kim, D. H. [1 ]
Lee, H. J. [1 ]
Kim, G. [1 ]
Koo, Y. S. [2 ]
Jung, J. H. [2 ]
Shin, H. J. [3 ]
Kim, J. -Y. [3 ]
Kang, J. -S. [1 ]
机构
[1] Catholic Univ Korea, Dept Phys, Puchon 420743, South Korea
[2] Inha Univ, Dept Phys, Inchon 402751, South Korea
[3] POSTECH, PAL, Pohang 790784, South Korea
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 03期
关键词
barium compounds; electronic structure; iron compounds; magnetic circular dichroism; nanoparticles; spin polarised transport; X-ray absorption spectra; X-RAY-ABSORPTION; TRANSITION-METAL COMPOUNDS; OCTAHEDRAL SYMMETRY; CIRCULAR-DICHROISM; SPECTROSCOPY; OXIDES; IRON;
D O I
10.1103/PhysRevB.79.033402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electronic structures of BaTiO3@X (core@shell) nanoparticles (X=gamma-Fe2O3, Fe3O4, and Fe) have been investigated by employing soft x-ray-absorption spectroscopy and x-ray magnetic circular dichroism (XMCD). It is found that the valence states of Ti ions near interfaces are formally tetravalent (Ti4+:3d(0)) and that the valence states of Fe ions in shells are essentially the same as those of the corresponding bulk materials, with some disorder in the site occupations for X=gamma-Fe2O3 and Fe3O4. The negligible Ti 2p XMCD signals were observed, indicating that the induced spin polarization of the interface Ti 3d electrons is negligible in BaTiO3@X nanoparticles.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties
    Wu, Hongjing
    Wu, Guanglei
    Wang, Liuding
    POWDER TECHNOLOGY, 2015, 269 : 443 - 451
  • [22] Superparamagnetic α-Fe2O3/Fe3O4 Heterogeneous Nanoparticles with Enhanced Biocompatibility
    Li, You
    Wang, Zhou
    Liu, Ruijiang
    NANOMATERIALS, 2021, 11 (04)
  • [23] α-Fe2O3 versus β-Fe2O3: Controlling the Phase of the Transformation Product of ε-Fe2O3 in the Fe2O3/SiO2 System
    Brazda, Petr
    Kohout, Jaroslav
    Bezdicka, Petr
    Kmjec, Tomas
    CRYSTAL GROWTH & DESIGN, 2014, 14 (03) : 1039 - 1046
  • [24] Comparative Study on Electronic Structure and Optical Properties of α-Fe2O3, Ag/α-Fe2O3 and S/α-Fe2O3
    Zhao, Cuihua
    Li, Baishi
    Zhou, Xi
    Chen, Jianhua
    Tang, Hongqun
    METALS, 2021, 11 (03) : 1 - 13
  • [25] Magnetic α-Fe2O3,γ-Fe2O3 and Fe3O4 Prepared by Facile Calcination from K4[Fe(CN)6]
    李国平
    吴梅华
    李飞明
    翁文
    结构化学, 2015, 34 (12) : 1935 - 1938
  • [26] Selective synthesis of Fe3O4, γ-Fe2O3, and α-Fe2O3 using cellulose-based composites as precursors
    Liu, Shan
    Yao, Ke
    Fu, Lian-Hua
    Ma, Ming-Guo
    RSC ADVANCES, 2016, 6 (03): : 2135 - 2140
  • [27] Synthesis and Physical Characterization of γ-Fe2O3 and (α plus γ)-Fe2O3 Nanoparticles
    Bhavani, P.
    Reddy, N. Ramamanohar
    Reddy, I. Venkata Subba
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2017, 70 (02) : 150 - 154
  • [28] Nanowire structural evolution from Fe3O4 to ε-Fe2O3
    Ding, Yong
    Morber, Jenny Ruth
    Snyder, Robert L.
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (07) : 1172 - 1178
  • [29] THE EFFECTS OF NUCLEATION AND GROWTH ON THE REDUCTION OF FE2O3 TO FE3O4
    HAYES, PC
    GRIEVESON, P
    METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY, 1981, 12 (02): : 319 - 326
  • [30] Hydrothermal synthesis of ultrafine α-Fe2O3 and Fe3O4 powders
    Li, Y
    Liao, H
    Qian, Y
    MATERIALS RESEARCH BULLETIN, 1998, 33 (06) : 841 - 844