Effect of physical and geometrical parameters on transverse low-velocity impact response of sandwich panels with a transversely flexible core

被引:44
|
作者
Khalili, M. R.
Malekzadeh, K.
Mittal, R. K.
机构
[1] KN Toosi Univ Technol, Dept Mech Engn, Tehran, Iran
[2] Indian Inst Technol New Delhi, Dept Appl Mech, New Delhi 110016, India
关键词
sandwich panel; geometrical parameters; low-velocity transverse impact; contact behavior modeling;
D O I
10.1016/j.compstruct.2005.07.016
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The effects of important physical and geometrical parameters on transverse low-velocity impact response of composite sandwich panels have been studied in this paper. Impacts are assumed to occur normally over the top and/or the bottom face sheets, at arbitrary locations and with different impactor masses and initial velocities. For deriving closed-form solutions for the contact force, displacements of the impactor and the panel in the transverse direction, the sandwich panel has been modeled as a discrete three-degrees-of-freedom dynamic system with equivalent masses and springs (SM). The dynamic response of the panel is based on the improved higher-order sandwich plate theory (IHSAPT) and both thick and thin panels have been analyzed. The effects of transverse flexibility of the core, and boundary conditions are considered. Also, the area of the contact patch between the impactor and the panel can be varied as it changes with contact duration. The numerical results of the analysis have been compared either with the available experimental results or with some theoretical results. It is established that the dynamic behavior of the sandwich panel depends on various parameters, such as the aspect ratio and the length-to -thickness ratio of the panel, core thickness, boundary conditions of the panel and impactor parameters like its potential energy, velocity and the location of contact point, etc. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:430 / 443
页数:14
相关论文
共 50 条
  • [41] Low-velocity impact response of hybrid core sandwich panels with spring and strut cores filled with resin, silicone, and foam
    Charkaoui, Assil
    Hassan, Noha M.
    Bahroun, Zied
    Ibrahim, Mahmoud
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ENGINEERING, 2024, 19 (01):
  • [42] Experiments and numerical simulations of low-velocity impact of sandwich composite panels
    Zhang, Taotao
    Yan, Ying
    Li, Jianfeng
    POLYMER COMPOSITES, 2017, 38 (04) : 646 - 656
  • [43] Damage prediction in composite sandwich panels subjected to low-velocity impact
    Feng, D.
    Aymerich, F.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 52 : 12 - 22
  • [44] Low-velocity impact response of sandwich panels with layered-gradient metal foam cores
    Zhou, Xiongfei
    Jing, Lin
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2024, 184
  • [45] Parametric effects of low-velocity impact response and damage mode of aluminum honeycomb sandwich panels
    Xie S.
    Jing K.
    Feng Z.
    Ma W.
    Wang H.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (05): : 3060 - 3074
  • [46] Experimental and numerical study on the low-velocity impact response of thermoplastic composite corrugated sandwich panels
    Pan, Xin
    Chen, Liming
    Liu, Houchang
    Qin, Weiming
    Du, Bing
    Li, Weiguo
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2022, 24 (04) : 1828 - 1846
  • [47] A modified new analytical model for low-velocity impact response of circular composite sandwich panels
    Feli, S.
    Khodadadian, S.
    Safari, M.
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2016, 18 (05) : 552 - 578
  • [48] Effects of aluminum foam filling on the low-velocity impact response of sandwich panels with corrugated cores
    Yan, L. L.
    Yu, B.
    Han, B.
    Zhang, Q. C.
    Lu, T. J.
    Lu, B. H.
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2020, 22 (04) : 929 - 947
  • [49] An experimental and numerical investigation of core damage size in honeycomb sandwich panels subject to low-velocity impact
    Wowk, D.
    Reyno, T.
    Yeung, R.
    Marsden, C.
    COMPOSITE STRUCTURES, 2020, 254
  • [50] Low-velocity perforation behavior of composite sandwich panels with aluminum foam core
    Li, Zhibin
    Zheng, Zhijun
    Yu, Jilin
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2013, 15 (01) : 92 - 109