Implementation of Sparse Superposition Codes

被引:3
|
作者
Condo, Carlo [1 ,2 ,3 ,4 ,5 ]
Gross, Warren J. [1 ,6 ,7 ,8 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0G4, Canada
[2] Politecn Torino, Elect & Comp Engn, Turin, Italy
[3] Univ Illinois, Chicago, IL USA
[4] Politec Torino & Telecom Bretagne, Elect & Telecommunicat Engn, Plouzane, France
[5] McGill Univ, ISIP Lab, Montreal, PQ, Canada
[6] Univ Waterloo, Elect Engn, Waterloo, ON, Canada
[7] Univ Toronto, Toronto, ON, Canada
[8] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ, Canada
关键词
Sparse superposition codes; compressed sensing; approximate message passing; encoder; decoder;
D O I
10.1109/TSP.2017.2664045
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse superposition codes (SSCs) are capacity achieving codes whose decoding process is a linear sensing problem. Decoding approaches thus exploit the approximate message passing algorithm, which has been proven to be effective in compressing sensing. Previous work from the authors has evaluated the error correction performance of SSCs under finite precision and finite code length. This paper proposes the first SSC encoder and decoder architectures in the literature. The architectures are parametrized and applicable to all SSCs: A set of wide-ranging case studies is then considered, and code-specific approximations, along with implementation results in 65 nmCMOS technology, are then provided. The encoding process can be carried out with low power consumption (<= 2.103 mW), while the semi-parallel decoder architecture can reach a throughput of 1.3 Gb/s with a 768 x 6-bit SSC codeword and an area occupation of 2.43 mm(2).
引用
收藏
页码:2421 / 2427
页数:7
相关论文
共 50 条
  • [21] MMSE-A-MAP Decoder for Block Orthogonal Sparse Superposition Codes in Fading Channels
    Han, Donghwa
    Lee, Bowhyung
    Lee, Seunghoon
    Lee, Namyoon
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 2477 - 2482
  • [22] Capacity-Achieving Sparse Superposition Codes via Approximate Message Passing Decoding
    Rush, Cynthia
    Greig, Adam
    Venkataramanan, Ramji
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (03) : 1476 - 1500
  • [23] Fast Sparse Superposition Codes Have Near Exponential Error Probability for R &lt; C
    Joseph, Antony
    Barron, Andrew R.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (02) : 919 - 942
  • [24] Block Orthogonal Sparse Superposition Codes for Ultra-Reliable Low-Latency Communications
    Han, Donghwa
    Park, Jeonghun
    Lee, Youngjoo
    Poor, H. Vincent
    Lee, Namyoon
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (12) : 6884 - 6897
  • [25] Superposition Codes for Mismatched Decoding
    Scarlett, Jonathan
    Martinez, Alfonso
    Guillen i Fabregas, Albert
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 81 - +
  • [26] Approximate message-passing with spatially coupled structured operators, with applications to compressed sensing and sparse superposition codes
    Barbier, Jean
    Schuelke, Christophe
    Krzakala, Florent
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,
  • [27] Sparse codes and spikes
    Olshausen, BA
    PROBABILISTIC MODELS OF THE BRAIN: PERCEPTION AND NEURAL FUNCTION, 2002, : 257 - 272
  • [28] Sparse Regression Codes
    Venkataramanan, Ramji
    Tatikonda, Sekhar
    Barron, Andrew
    FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2019, 15 (1-2): : 1 - 195
  • [29] Batched Sparse Codes
    Yang, Shenghao
    Yeung, Raymond W.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (09) : 5322 - 5346
  • [30] Practical Inner Codes for Batched Sparse Codes
    Zhou, Zhiheng
    Li, Congduan
    Guang, Xuan
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,