Functional data analysis: estimation of the relative error in functional regression under random left-truncation model

被引:18
|
作者
Altendji, Belkais [1 ]
Demongeot, Jacques [2 ]
Laksaci, Ali [3 ]
Rachdi, Mustapha [4 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Lab Math, Sidi Bel Abbes, Algeria
[2] Univ Grenoble Alpes, Fac Med Grenoble, Lab AGEIS, Equipe AGIM,EA 7407, La Tronche, France
[3] King Khalid Univ, Dept Math, Coll Sci, Abha, Saudi Arabia
[4] Univ Grenoble Alpes, Equipe AGIM, Lab AGEIS, UFR,SHS,EA 7407, BP 47, F-38040 Grenoble 09, France
关键词
Functional data analysis (FDA); censored data; truncated data; small ball probability; functional regression; relative error; LOCAL LINEAR-REGRESSION; NONPARAMETRIC REGRESSION; ASYMPTOTIC PROPERTIES; CONDITIONAL QUANTILE; UNIFORM CONSISTENCY; BOOTSTRAP; PREDICTION; SELECTION;
D O I
10.1080/10485252.2018.1438609
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the relationship between a functional random covariable and a scalar response which is subject to left-truncation by another random variable. Precisely, we use the mean squared relative error as a loss function to construct a nonparametric estimator of the regression operator of these functional truncated data. Under some standard assumptions in functional data analysis, we establish the almost sure consistency, with rates, of the constructed estimator as well as its asymptotic normality. Then, a simulation study, on finite-sized samples, was carried out in order to show the efficiency of our estimation procedure and to highlight its superiority over the classical kernel estimation, for different levels of simulated truncated data.
引用
收藏
页码:472 / 490
页数:19
相关论文
共 50 条
  • [21] Strong convergence of a nonparametric relative error regression estimator under missing data with functional predictors
    Boucetta, Adel
    Guessoum, Zohra
    Ould-Said, Elias
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2024, 53 (04) : 970 - 1002
  • [22] Variable selection and estimation for the additive hazards model subject to left-truncation, right-censoring and measurement error in covariates
    Chen, Li-Pang
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (18) : 3261 - 3300
  • [23] LOCAL LINEAR ESTIMATION OF THE CONDITIONAL MODE UNDER LEFT TRUNCATION FOR FUNCTIONAL REGRESSORS
    Boudada, Halima
    Leulmi, Sarra
    KYBERNETIKA, 2023, 59 (04) : 548 - 574
  • [24] On the maximum likelihood estimation of a discrete, finite support distribution under left-truncation and competing risks
    Lautier, Jackson P.
    Pozdnyakov, Vladimir
    Yan, Jun
    STATISTICS & PROBABILITY LETTERS, 2024, 207
  • [25] H-relative error estimation for multiplicative regression model with random effect
    Zhanfeng Wang
    Zhuojian Chen
    Zimu Chen
    Computational Statistics, 2018, 33 : 623 - 638
  • [26] H-relative error estimation for multiplicative regression model with random effect
    Wang, Zhanfeng
    Chen, Zhuojian
    Chen, Zimu
    COMPUTATIONAL STATISTICS, 2018, 33 (02) : 623 - 638
  • [27] Functional local linear estimate for functional relative-error regression
    Chahad A.
    Ait-Hennani L.
    Laksaci A.
    Journal of Statistical Theory and Practice, 2017, 11 (4) : 771 - 789
  • [28] Nonparametric regression estimation for functional stationary ergodic data with missing at random
    Ling, Nengxiang
    Liang, Longlong
    Vieu, Philippe
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 162 : 75 - 87
  • [29] Nonparametric quantile regression estimation for functional data with responses missing at random
    Xu, Dengke
    Du, Jiang
    METRIKA, 2020, 83 (08) : 977 - 990
  • [30] Nonparametric quantile regression estimation for functional data with responses missing at random
    Dengke Xu
    Jiang Du
    Metrika, 2020, 83 : 977 - 990