Functional data analysis: estimation of the relative error in functional regression under random left-truncation model

被引:18
|
作者
Altendji, Belkais [1 ]
Demongeot, Jacques [2 ]
Laksaci, Ali [3 ]
Rachdi, Mustapha [4 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Lab Math, Sidi Bel Abbes, Algeria
[2] Univ Grenoble Alpes, Fac Med Grenoble, Lab AGEIS, Equipe AGIM,EA 7407, La Tronche, France
[3] King Khalid Univ, Dept Math, Coll Sci, Abha, Saudi Arabia
[4] Univ Grenoble Alpes, Equipe AGIM, Lab AGEIS, UFR,SHS,EA 7407, BP 47, F-38040 Grenoble 09, France
关键词
Functional data analysis (FDA); censored data; truncated data; small ball probability; functional regression; relative error; LOCAL LINEAR-REGRESSION; NONPARAMETRIC REGRESSION; ASYMPTOTIC PROPERTIES; CONDITIONAL QUANTILE; UNIFORM CONSISTENCY; BOOTSTRAP; PREDICTION; SELECTION;
D O I
10.1080/10485252.2018.1438609
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the relationship between a functional random covariable and a scalar response which is subject to left-truncation by another random variable. Precisely, we use the mean squared relative error as a loss function to construct a nonparametric estimator of the regression operator of these functional truncated data. Under some standard assumptions in functional data analysis, we establish the almost sure consistency, with rates, of the constructed estimator as well as its asymptotic normality. Then, a simulation study, on finite-sized samples, was carried out in order to show the efficiency of our estimation procedure and to highlight its superiority over the classical kernel estimation, for different levels of simulated truncated data.
引用
收藏
页码:472 / 490
页数:19
相关论文
共 50 条
  • [1] On the Nonparametric Estimation of the Functional ψ-Regression for a Random Left-Truncation Model
    Derrar S.
    Laksaci A.
    Ould Said E.
    Journal of Statistical Theory and Practice, 2015, 9 (4) : 823 - 849
  • [2] Functional local linear estimation for the relative regression under left-truncation
    Altendji, Belkais
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2020, 59 (04): : 1 - 18
  • [3] ON THE NONPARAMETRIC ESTIMATION OF THE SIMPLE MODE UNDER RANDOM LEFT-TRUNCATION MODEL
    Ould-Said, Elias
    Tatachak, Abdelkader
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 54 (03): : 243 - 266
  • [4] M-estimation of the regression function under random left truncation and functional time series model
    Derrar, Saliha
    Laksaci, Ali
    Said, Elias Ould
    STATISTICAL PAPERS, 2020, 61 (03) : 1181 - 1202
  • [5] M-estimation of the regression function under random left truncation and functional time series model
    Saliha Derrar
    Ali Laksaci
    Elias Ould Saïd
    Statistical Papers, 2020, 61 : 1181 - 1202
  • [6] Regression Analysis of Dependent Current Status Data with Left-Truncation Under Linear Transformation Model
    Zhang, Mengyue
    Zhao, Shishun
    Xu, Da
    Hu, Tao
    Sun, Jianguo
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024,
  • [7] Asymptotic normality of a relative error functional regression estimator under left truncation and right censoring
    Boucetta, Adel
    Guessoum, Zohra
    Ould-Said, Elias
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [8] Nonparametric Relative Error Estimation via Functional Regressor by the k Nearest Neighbors Smoothing Under Truncation Random Data
    Bouabsa, Wahiba
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2021, 16 (01): : 97 - 116
  • [9] Nonparametric relative error regression for functional time series data under random censorship
    Fetitah, Omar
    Attouch, Mohammed K.
    Khardani, Salah
    Righi, Ali
    CHILEAN JOURNAL OF STATISTICS, 2021, 12 (02): : 145 - 170
  • [10] Nonparametric estimation of the relative error in functional regression and censored data
    Mechab, Boubaker
    Hamidi, Nesrine
    Benaissa, Samir
    CHILEAN JOURNAL OF STATISTICS, 2019, 10 (02): : 177 - 195