SPDEs driven by a homogeneous Wiener process

被引:0
|
作者
Peszat, S [1 ]
机构
[1] Polish Acad Sci, Math Inst, PL-31027 Krakow, Poland
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:417 / 427
页数:11
相关论文
共 50 条
  • [31] A non-homogeneous count process: marginalizing a Poisson driven Cox process
    Wang, Shuying
    Walker, Stephen G.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2025, 95 (04) : 726 - 741
  • [32] SOLVING SPDES DRIVEN BY COLORED NOISE: A CHAOS APPROACH
    Lototsky, S. V.
    Stemmann, K.
    QUARTERLY OF APPLIED MATHEMATICS, 2008, 66 (03) : 499 - 520
  • [33] Strong Averaging Principle for a Class of Slow-fast Singular SPDEs Driven by a-stable Process
    Sun, Xiaobin
    Xia, Huilian
    Xie, Yingchao
    Zhou, Xingcheng
    FRONTIERS OF MATHEMATICS, 2023, 18 (03): : 565 - 590
  • [34] ON STOCHASTIC ELLIPTIC EQUATIONS DRIVEN BY WIENER PROCESS WITH NON-LOCAL CONDITION
    Tuan, Nguyen Huy
    Hai, Nguyen Minh
    Thach, Tran Ngoc
    Can, Nguyen Huu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (10): : 2613 - 2635
  • [35] Trajectory fitting estimators for SPDEs driven by additive noise
    Cialenco I.
    Gong R.
    Huang Y.
    Statistical Inference for Stochastic Processes, 2018, 21 (1) : 1 - 19
  • [36] Stochastic Schrodinger equation driven by cylindrical Wiener process and fractional Brownian motion
    Grecksch, Wilfried
    Lisei, Hannelore
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 381 - 391
  • [37] Malliavin Calculus for White Noise Driven Parabolic SPDEs
    Vlad Bally
    Etienne Pardoux
    Potential Analysis, 1998, 9 : 27 - 64
  • [38] Concentration estimates for SPDEs driven by fractional Brownian motion
    Berglund, Nils
    Blessing, Alexandra
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2025, 30
  • [39] WHITE NOISE DRIVEN SPDEs WITH TWO REFLECTING WALLS
    Zhang, Tusheng
    Yang, Juan
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2011, 14 (04) : 647 - 659
  • [40] Malliavin calculus for white noise driven parabolic SPDEs
    Bally, V
    Pardoux, E
    POTENTIAL ANALYSIS, 1998, 9 (01) : 27 - 64