Cyclic Carbonation Calcination Studies of Limestone and Dolomite for CO2 Separation From Combustion Flue Gases

被引:11
|
作者
Senthoorselvan, Sivalingam [1 ]
Gleis, Stephan [1 ]
Hartmut, Spliethoff [1 ]
Yrjas, Patrik [2 ]
Hupa, Mikko [2 ]
机构
[1] TUM, Lehrstuhl Energiesyst, D-85748 Garching, Germany
[2] Abo Akad Proc Chem Ctr, FI-20500 Turku, Finland
关键词
CO2; separation; limestone and dolomite; carbonation; calcination; FLUIDIZED-BED; CALCIUM-OXIDE; CAPTURE; CAO; PERFORMANCE; CAPACITY; DIOXIDE;
D O I
10.1115/1.2969090
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Naturally occurring limestone and dolomite samples, originating from different geographical locations, were tested as potential sorbents for carbonation/calcination based CO2 capture from combustion flue gases. Samples have been studied in a thermogravimetric analyzer under simulated flue gas conditions at three calcination temperatures, viz., 750 degrees C, 875 degrees C, and 930 degrees C for four carbonation calcination reaction (CCR) cycles. The dolomite sample exhibited the highest rate of carbonation than the tested limestones. At the third cycle, its CO2 capture capacity per kilogram of the sample was nearly equal to that of Gotland, the highest reacting limestone tested. At the fourth cycle it surpassed Gotland, despite the fact that the CaCO3 content of the Sibbo dolomite was only 2/3 of that of the Gotland. Decay coefficients were calculated by a curve fitting exercise and its value is lowest for the Sibbo dolomite. That means, most probably its capture capacity per kilogram of the sample would remain higher well beyond the fourth cycle. There was a strong correlation between the calcination temperature, the specific surface area of the calcined samples, and the degree of carbonation. It was observed that the higher the calcination temperature, the lower the sorbent reactivity. The Brunauer-Emmett-Teller measurements and scanning electron microscope images provided quantitative and qualitative evidences to prove this. For a given limestone/dolomite sample, sorbents CO2 capture capacity depended on the number of CCR cycles and the calcination temperature. In a CCR loop, if the sorbent is utilized only for a certain small number of cycles (<20), the CO2 capture capacity could be increased by lowering the calcination temperature. According to the equilibrium thermodynamics, the CO2 partial pressure ill the calciner should be lowered to lower the calcination temperature. This can be achieved by additional steam supply into the calciner Steam could then be condensed in an external condenser to single out the CO2 stream from the exit gas mixture of the calciner A calciner design based on this concept is illustrated. [DOI: 10.1115/1.2969090]
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [21] SO2 removal and CO2 capture by limestone resulting from calcination/sulfation/carbonation cycles
    Li, Y
    Buchi, S
    Grace, JR
    Lim, CJ
    ENERGY & FUELS, 2005, 19 (05) : 1927 - 1934
  • [22] Modeling of carbonation reaction for CaO-based limestone with CO2 in multitudinous calcination-carbonation cycles
    Cai, Jianjun
    Wang, Shuzhong
    Kuang, Cao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (31) : 19744 - 19754
  • [23] Separation of CO2 from flue gases using hydroquinone clathrate compounds
    Jong-Won Lee
    Pratik Dotel
    Jeasung Park
    Ji-Ho Yoon
    Korean Journal of Chemical Engineering, 2015, 32 : 2507 - 2511
  • [24] Microporous materials for the effective adsorption and separation of CO2 from flue gases
    Prodinger, Sebastian
    Derewinski, Miroslaw
    Motkuri, Radha Kishan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [25] Separation of CO2 from flue gases using hydroquinone clathrate compounds
    Lee, Jong-Won
    Dotel, Pratik
    Park, Jeasung
    Yoon, Ji-Ho
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2015, 32 (12) : 2507 - 2511
  • [26] Limestone Calcination with CO2 Capture (III): Characteristics of Coal Combustion during Limestone Decomposition
    Wang, Yin
    Lin, Shiying
    Suzuki, Yoshizo
    ENERGY & FUELS, 2009, 23 (5-6) : 2804 - 2809
  • [27] Performance of steel slag in carbonation-calcination looping for CO2 capture from industrial flue gas
    Tian, Si-cong
    Jiang, Jian-guo
    Li, Kai-min
    Yan, Feng
    Chen, Xue-jing
    RSC ADVANCES, 2014, 4 (14) : 6858 - 6862
  • [28] THE EFFECT OF CO2 ON THE KINETICS AND EXTENT OF CALCINATION OF LIMESTONE AND DOLOMITE PARTICLES IN FLUIDIZED-BEDS
    DENNIS, JS
    HAYHURST, AN
    CHEMICAL ENGINEERING SCIENCE, 1987, 42 (10) : 2361 - 2372
  • [29] CO2 capture of limestone modified by hydration-dehydration technology for carbonation/calcination looping
    Wang, Ke
    Guo, Xin
    Zhao, Pengfei
    Zhang, Liqi
    Zheng, Chuguang
    CHEMICAL ENGINEERING JOURNAL, 2011, 173 (01) : 158 - 163
  • [30] Effect of H2S on the CO2 capture capacity of limestone in calcination/carbonation cycles
    Li, Z.-S. (lizs@mail.tsinghua.edu.cn), 1600, Tsinghua University (53):