The Study on Blind Unmixing for Hyperspectral Imagery

被引:0
|
作者
Huang, Zuowei [1 ]
Huang, Yuanjiang [2 ]
机构
[1] Hunan Univ Technol, Sch Architecture & Urban Planning, Zhuzhou 412008, Peoples R China
[2] Central South Univ, Sch Geosci & Informat Phys, Changsha 410083, Peoples R China
关键词
Hyperspectral imagery; Mixed Pixel; Endmember; independent component analysis;
D O I
10.4028/www.scientific.net/AMR.779-780.1770
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hyperspectral is the frontiers of Remote Sensing development, which plays a more and more important role in many fields. the mixed pixels become an main obstacle to the in depth development for quantification imagery analysis,This paper presented a novel approach based on independent component analysis for hyperspectral unmixing,it introducing the constraints of abundance nonnegative and abundance sum-to-one, the purpose of our algorithm was not to find independent components as decomposition results anymore. It developed an abundance modeling technique to describe the statistical distribution of the data. The modeling approach is capable of self-adaptation and can be applied to hyperspectral images with different characteristics. Experimental results demonstrated that the proposed approach can obtain more accurate results than the other state-of-the-art approaches.
引用
收藏
页码:1770 / +
页数:2
相关论文
共 50 条
  • [31] Unmixing component analysis for anomaly detection in hyperspectral imagery
    Gu, Yanfeng
    Ye, Zhang
    Ying, Liu
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 965 - +
  • [32] SPARSE UNMIXING BASED ON FEATURE PIXELS FOR HYPERSPECTRAL IMAGERY
    Cui, Xinrui
    Wang, Z. Jane
    [J]. 2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 21 - 25
  • [33] Blind Hyperspectral Unmixing Using Autoencoders: A Critical Comparison
    Palsson, Burkni
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15 : 1340 - 1372
  • [34] Blind Hyperspectral Unmixing Using Autoencoders: A Critical Comparison
    Palsson, Burkni
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 1340 - 1372
  • [35] FAST BLIND HYPERSPECTRAL UNMIXING BASED ON GRAPH LAPLACIAN
    Qin, Jing
    Lee, Harlin
    Chi, Jocelyn T.
    Lou, Yifei
    Chanussot, Jocelyn
    Bertozzi, Andrea L.
    [J]. 2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [36] BLIND NONLINEAR HYPERSPECTRAL UNMIXING USING AN lq REGULARIZER
    Sigurdsson, J.
    Ulfarsson, M. O.
    Sveinsson, J. R.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4225 - 4228
  • [37] Multilayer Unmixing for Hyperspectral Imagery With Fast Kernel Archetypal Analysis
    Zhao, Genping
    Zhao, Chunhui
    Jia, Xiuping
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (10) : 1532 - 1536
  • [38] An unmixing algorithm based on the relevance vector machine for hyperspectral imagery
    Yang, Jinghui
    Wang, Liguo
    Qian, Jinxi
    [J]. Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2015, 36 (02): : 267 - 270
  • [39] MULTISCALE SPATIAL SPARSE UNMIXING FOR REMOTELY SENSED HYPERSPECTRAL IMAGERY
    Zheng, Jiajun
    Liang, Huqing
    Zhang, Shaoquan
    Li, Fan
    Lai, Pengfei
    Wang, Shengqian
    Deng, Chengzhi
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5894 - 5897
  • [40] Entropic Descent Archetypal Analysis for Blind Hyperspectral Unmixing
    Zouaoui, Alexandre
    Muhawenayo, Gedeon
    Rasti, Behnood
    Chanussot, Jocelyn
    Mairal, Julien
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4649 - 4663