Q-curvature and Poincare metrics

被引:0
|
作者
Fefferman, C [1 ]
Graham, CR
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:139 / 151
页数:13
相关论文
共 50 条
  • [21] Conformal metrics on 2m with constant Q-curvature
    Department of Mathematics, ETH Zurich, Ramistrasse 101, CH-8092 Zurich, Switzerland
    Att Aca Naz Lincei Cl Sci Fis Mat Nat Rend Lincei Mat Appl, 2008, 4 (279-292):
  • [22] CONFORMALLY EUCLIDEAN METRICS ON Rn WITH ARBITRARY TOTAL Q-CURVATURE
    Hyder, Ali
    ANALYSIS & PDE, 2017, 10 (03): : 635 - 652
  • [23] Constant Q-curvature metrics on conic 4-manifolds
    Fang, Hao
    Ma, Biao
    ADVANCES IN CALCULUS OF VARIATIONS, 2022, 15 (02) : 235 - 264
  • [24] "Large" conformal metrics of prescribed Q-curvature in the negative case
    Galimberti, Luca
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (02):
  • [25] Singular metrics of constant negative Q-curvature in Euclidean spaces
    Koenig, Tobias
    Wang, Yamin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 232
  • [26] Constant Q-curvature metrics with Delaunay ends: The nondegenerate case
    Andrade, Joao Henrique
    Caju, Rayssa
    Do O, Joao Marcos
    Ratzkin, Jesse
    Santos, Almir Silva
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2024, 25 (02) : 965 - 1031
  • [27] CONSTANT Q-CURVATURE METRICS WITH DELAUNAY ENDS: THE NONDEGENERATE CASE
    Andrade, João Henrique
    Caju, Rayssa
    Doo, João Marcos
    Almir, Jesse Ratzkin
    Santos, Silva
    arXiv, 2021,
  • [28] In the search of Q-curvature
    Chang, Sun-Yung Alice
    REVISTA MATEMATICA IBEROAMERICANA, 2011, : 103 - +
  • [29] What is Q-Curvature?
    Chang, S. -Y. Alice
    Eastwood, Michael
    Orsted, Bent
    Yang, Paul C.
    ACTA APPLICANDAE MATHEMATICAE, 2008, 102 (2-3) : 119 - 125
  • [30] What is Q-Curvature?
    S.-Y. Alice Chang
    Michael Eastwood
    Bent Ørsted
    Paul C. Yang
    Acta Applicandae Mathematicae, 2008, 102 : 119 - 125