MULTIPLICITY OF POSITIVE SOLUTIONS FOR SECOND-ORDER DIFFERENTIAL INCLUSION SYSTEMS DEPENDING ON TWO PARAMETERS

被引:0
|
作者
Yuan, Ziqing [1 ]
Huang, Lihong [1 ]
Zeng, Chunyi [2 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Southwest Univ Nationalities, Dept Fdn Educ, Chengdu 610000, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Neumann problem; differential inclusion system; locally Lipschitz; nonsmooth critical point; CRITICAL-POINTS THEOREM; BOUNDARY-VALUE-PROBLEMS; HEMIVARIATIONAL INEQUALITIES; P-LAPLACIAN; EXISTENCE; ORDER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the two-point boundary-value system -u ''(i) + u(i) is an element of lambda partial derivative(ui) F(u(1), ..., u(n)) + mu partial derivative(ui) G(u(1), ..., u(n)), u'(i)(a) = u'(i)(b) = 0 u(i) >= 0, 1 <= i <= n. Applying a version of nonsmooth three critical points theorem, we show the existence of at least three positive solutions.
引用
下载
收藏
页数:14
相关论文
共 50 条