The contact magnetic flow in 3D Sasakian manifolds

被引:75
|
作者
Cabrerizo, J. L. [1 ]
Fernandez, M. [1 ]
Gomez, J. S. [1 ]
机构
[1] Univ Seville, Dept Geometry & Topol, Seville 41080, Spain
关键词
VECTOR CROSS PRODUCTS;
D O I
10.1088/1751-8113/42/19/195201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We first present a geometrical approach to magnetic fields in three-dimensional Riemannian manifolds, because this particular dimension allows one to easily tie vector fields and 2-forms. When the vector field is divergence free, it defines a magnetic field on the manifold whose Lorentz force equation presents a simple and useful form. In particular, for any three-dimensional Sasakian manifold the contact magnetic field is studied and the normal magnetic trajectories are determined. As an application, we consider the three-dimensional unit sphere, where we prove the existence of closed magnetic trajectories of the contact magnetic field, and that this magnetic flow is quantized in the set of rational numbers.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Complex Dynamical Behaviors in a 3D Simple Chaotic Flow with 3D Stable or 3D Unstable Manifolds of a Single Equilibrium
    Wei, Zhouchao
    Li, Yingying
    Sang, Bo
    Liu, Yongjian
    Zhang, Wei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (07):
  • [32] Contact CR δ-invariant: an optimal estimate for Sasakian statistical manifolds
    Siddiqui, Aliya Naaz
    Khan, Meraj Ali
    Ishan, Amira
    AIMS MATHEMATICS, 2024, 9 (10): : 29220 - 29234
  • [33] Contact CR-Warped Product Submanifolds in Sasakian Manifolds
    Izumi Hasegawa
    Ion Mihai
    Geometriae Dedicata, 2003, 102 : 143 - 150
  • [34] Contact CR-submanifolds in Sasakian manifolds - a foliated approach
    Wolak, RA
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (1-2): : 7 - 19
  • [35] *-Weyl Curvature Tensor within the Framework of Sasakian and (κ, μ)-Contact Manifolds
    Venkatesha, Venkatesha
    Kumara, H. Aruna
    TAMKANG JOURNAL OF MATHEMATICS, 2021, 52 (03): : 383 - 395
  • [36] Magnetic Frenet curves on para-Sasakian manifolds
    Bejan, Cornelia-Livia
    Binh, Tran Quoc
    Druta-Romaniuc, Simona-Luiza
    FILOMAT, 2023, 37 (05) : 1479 - 1496
  • [37] ON THE INDUCED GEOMETRY ON SURFACES IN 3D CONTACT SUB-RIEMANNIAN MANIFOLDS
    Barilari, Davide
    Boscain, Ugo
    Cannarsa, Daniele
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
  • [38] A study on magnetic curves in trans-Sasakian manifolds
    Bozdag, Serife Nur
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (03): : 47 - 60
  • [39] ON PSEUDO-HERMITIAN MAGNETIC CURVES IN SASAKIAN MANIFOLDS
    Guvenc, Saban
    Ozgur, Cihan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (05): : 1291 - 1304
  • [40] Legendrian Mean Curvature Flow in η-Einstein Sasakian Manifolds
    Chang, Shu-Cheng
    Han, Yingbo
    Wu, Chin-Tung
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (03)