Dynamic Coupling of Boltzmann Plasma Model to Surface Erosion Model for Kinetic Treatment of Plasma-Material Interactions

被引:4
|
作者
Keniley, S. [1 ]
Curreli, D. [1 ]
机构
[1] Univ Illinois, Dept Nucl Plasma & Radiol Engn, 104 South Wright St, Urbana, IL 61801 USA
关键词
Binary-collision approximation; model coupling; Boltzmann solver;
D O I
10.13182/FST16-117
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
We present an innovative coupled Boltzmann-binary collision approximation (BCA) method for the simulation of the near-wall plasma in the presence of a material-releasing wall. The method is based on a full-f multispecies Boltzmann solver for the plasma (charged and neutral species) coupled to a modification of the classical BCA code TRIDYN. Both the plasma ions and the impurities are treated as Boltzmann kinetic species, allowing high resolution even at very disparate densities, particle fluxes, drift velocities, and energy fluxes. From the distribution functions, all the fluid moments (density, heat flux, etc.) and the net and gross erosion rates are derived. An example of calculation of a helium plasma facing a beryllium wall is reported, showing the evolution of the phase-spaces of ions, neutrals, and material impurities in the near-wall region at nominal ITER conditions.
引用
收藏
页码:93 / 102
页数:10
相关论文
共 50 条
  • [21] A kinetic model of plasma turbulence
    Servidio, S.
    Valentini, F.
    Perrone, D.
    Greco, A.
    Califano, F.
    Matthaeus, W. H.
    Veltri, P.
    JOURNAL OF PLASMA PHYSICS, 2015, 81
  • [22] MODEL KINETIC EQUATION FOR A PLASMA
    PRICE, JC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1969, 14 (11): : 1079 - &
  • [23] Mitigation of plasma-material interactions via passive Li efflux from the surface of a flowing liquid lithium limiter in EAST
    Zuo, G. Z.
    Hu, J. S.
    Maingi, R.
    Ren, J.
    Sun, Z.
    Yang, Q. X.
    Chen, Z. X.
    Xu, H.
    Tritz, K.
    Zakharov, L. E.
    Gentile, C.
    Meng, X. C.
    Huang, M.
    Xu, W.
    Chen, Y.
    Wang, L.
    Yan, N.
    Mao, S. T.
    Yang, Z. D.
    Li, J. G.
    NUCLEAR FUSION, 2017, 57 (04)
  • [24] Experiments in support of the Gas Dynamic Trap based facility for plasma-material interaction testing
    Soldatkina, E. I.
    Arakcheev, A. S.
    Bagryansky, P. A.
    FUSION ENGINEERING AND DESIGN, 2013, 88 (11) : 3084 - 3090
  • [25] Numerical implementation of a cold-ion, Boltzmann-electron model for nonplanar plasma-surface interactions
    Holgate, J. T.
    Coppins, M.
    PHYSICS OF PLASMAS, 2018, 25 (04)
  • [26] DYNAMIC UNIAXIAL STRAIN MODEL FOR PLASMA-SPRAYED MATERIAL
    TOKHEIM, RE
    JOURNAL DE PHYSIQUE, 1985, 46 (NC-5): : 127 - 130
  • [27] Considerations for in situ, real time measurement of plasma-material interactions using Digital Holographic imaging
    Biewer, T. M.
    Smith, C. D.
    Gebhart, T. E.
    Greenhalgh, A.
    Ren, X.
    Thomas, C. E.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (02):
  • [28] An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices
    Hartwig, Zachary S.
    Barnard, Harold S.
    Lanza, Richard C.
    Sorbom, Brandon N.
    Stahle, Peter W.
    Whyte, Dennis G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (12):
  • [29] A SELF-CONSISTENT KINETIC QUASIPARTICLE MODEL FOR WAVE PLASMA INTERACTIONS
    TRACY, ER
    BOOZER, AH
    PHYSICS LETTERS A, 1989, 139 (07) : 318 - 326
  • [30] Liquid lithium divertor characteristics and plasma-material interactions in NSTX high-performance plasmas
    Jaworski, M. A.
    Abrams, T.
    Allain, J. P.
    Bell, M. G.
    Bell, R. E.
    Diallo, A.
    Gray, T. K.
    Gerhardt, S. P.
    Kaita, R.
    Kugel, H. W.
    LeBlanc, B. P.
    Maingi, R.
    McLean, A. G.
    Menard, J.
    Nygren, R.
    Ono, M.
    Podesta, M.
    Roquemore, A. L.
    Sabbagh, S. A.
    Scotti, F.
    Skinner, C. H.
    Soukhanovskii, V. A.
    Stotler, D. P.
    NUCLEAR FUSION, 2013, 53 (08)