Statistical topological insulators

被引:76
|
作者
Fulga, I. C. [1 ]
van Heck, B. [1 ]
Edge, J. M. [1 ]
Akhmerov, A. R. [1 ,2 ]
机构
[1] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 15期
关键词
SUPERCONDUCTORS; LOCALIZATION; MODELS;
D O I
10.1103/PhysRevB.89.155424
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We define a class of insulators with gapless surface states protected from localization due to the statistical properties of a disordered ensemble, namely, due to the ensemble's invariance under a certain symmetry. We show that these insulators are topological, and are protected by a Z(2) invariant. Finally, we prove that every topological insulator gives rise to an infinite number of classes of statistical topological insulators in higher dimensions. Our conclusions are confirmed by numerical simulations.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Topological hierarchy insulators and topological fractal insulators
    He, Jing
    Liang, Ying
    Kou, Su-peng
    EPL, 2015, 112 (01)
  • [2] Nanomaterials and Crystals of Topological Insulators and Topological Crystalline Insulators
    Saghir, M.
    Lees, M. R.
    York, S. J.
    Hindmarsh, S. A.
    Sanchez, A. M.
    Walker, M.
    McConville, C. F.
    Balakrishnan, G.
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2016, 96 (02) : 121 - 130
  • [3] Topological insulators
    Felser, Claudia
    Qi, Xiao-Liang
    MRS BULLETIN, 2014, 39 (10) : 843 - 848
  • [4] Topological insulators
    不详
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2009, 3 (06): : A87 - A87
  • [5] Topological insulators
    Claudia Felser
    Xiao-Liang Qi
    MRS Bulletin, 2014, 39 : 843 - 846
  • [6] Topological insulators
    Kane, Charles
    Moore, Joel
    PHYSICS WORLD, 2011, 24 (02) : 32 - 36
  • [7] TOPOLOGICAL INSULATORS
    Moore, Joel E.
    IEEE SPECTRUM, 2011, 48 (07) : 38 - 57
  • [8] Topological Insulators and Topological Superconductors
    Lovesey, S. W.
    CONTEMPORARY PHYSICS, 2014, 55 (04) : 353 - 354
  • [9] TOPOLOGICAL INSULATORS Quasi-1D topological insulators
    Huang, Huaqing
    Duan, Wenhui
    NATURE MATERIALS, 2016, 15 (02) : 129 - 130
  • [10] Topological Switch between Second-Order Topological Insulators and Topological Crystalline Insulators
    Ezawa, Motohiko
    PHYSICAL REVIEW LETTERS, 2018, 121 (11)