Topological Switch between Second-Order Topological Insulators and Topological Crystalline Insulators

被引:104
|
作者
Ezawa, Motohiko [1 ]
机构
[1] Univ Tokyo, Dept Appl Phys, Hongo 7-3-1, Tokyo 1138656, Japan
关键词
Conductance quantum - Crystalline insulators - In-plane magnetic fields - Inversion symmetry - Local magnetization - Sample surface - Second orders - Topological number;
D O I
10.1103/PhysRevLett.121.116801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate a topological switch between second-order topological insulators (SOTIs) and topological crystalline insulators (TCIs). Both the SOTI and the TCI are protected by the mirror and inversion symmetries, for which we define the bulk topological numbers of the same type. When an inplane magnetic field is introduced parallel to one of the helical edges, the system becomes a TCI. The conductance along the edge is 1 in the unit of the conductance quantum e(2) / h. When it becomes orthogonal to a diagonal line, two topological corner states emerge on its vertices, and the system becomes a SOTI. This may be used as a basis of a topological circuit-changing switch. Alternatively, the device may be used as a sensor to measure local magnetization on a sample surface with a resolution of 10 nm.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Nonlinear Second-Order Topological Insulators
    Zangeneh-Nejad, Farzad
    Fleury, Romain
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (05)
  • [2] Engineering second-order topological insulators via coupling two first-order topological insulators
    Liu, Lizhou
    An, Jiaqi
    Ren, Yafei
    Zhang, Ying-Tao
    Qiao, Zhenhua
    Niu, Qian
    [J]. PHYSICAL REVIEW B, 2024, 110 (11)
  • [3] Nonlinear second-order photonic topological insulators
    Marco S. Kirsch
    Yiqi Zhang
    Mark Kremer
    Lukas J. Maczewsky
    Sergey K. Ivanov
    Yaroslav V. Kartashov
    Lluis Torner
    Dieter Bauer
    Alexander Szameit
    Matthias Heinrich
    [J]. Nature Physics, 2021, 17 : 995 - 1000
  • [4] Magnetic second-order topological insulators and semimetals
    Ezawa, Motohiko
    [J]. PHYSICAL REVIEW B, 2018, 97 (15)
  • [5] Nonlinear second-order photonic topological insulators
    Kirsch, Marco S.
    Zhang, Yiqi
    Kremer, Mark
    Maczewsky, Lukas J.
    Ivanov, Sergey K.
    Kartashov, Yaroslav V.
    Torner, Lluis
    Bauer, Dieter
    Szameit, Alexander
    Heinrich, Matthias
    [J]. NATURE PHYSICS, 2021, 17 (09) : 995 - +
  • [6] Nanomaterials and Crystals of Topological Insulators and Topological Crystalline Insulators
    Saghir, M.
    Lees, M. R.
    York, S. J.
    Hindmarsh, S. A.
    Sanchez, A. M.
    Walker, M.
    McConville, C. F.
    Balakrishnan, G.
    [J]. JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2016, 96 (02) : 121 - 130
  • [7] Second-order topological insulators and superconductors with an order-two crystalline symmetry
    Geier, Max
    Trifunovic, Luka
    Hoskam, Max
    Brouwer, Piet W.
    [J]. PHYSICAL REVIEW B, 2018, 97 (20)
  • [8] Second-order topological insulators and tunable topological phase transitions in honeycomb ferromagnets
    Cai, Linke
    Li, Runhan
    Wu, Xinming
    Huang, Baibiao
    Dai, Ying
    Niu, Chengwang
    [J]. PHYSICAL REVIEW B, 2023, 107 (24)
  • [9] Topological phase transition between Z 2 and second-order topological insulators in a kagome circuit
    Yang, Yating
    Chen, Xingyu
    Pu, Zhenhang
    Wu, Jien
    Huang, Xueqin
    Deng, Weiyin
    Lu, Jiuyang
    Liu, Zhengyou
    [J]. PHYSICAL REVIEW B, 2024, 109 (16)
  • [10] Topological Crystalline Insulators
    Fu, Liang
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (10)